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1 Light Absorption by Molecules

Recall the Beer-Lambert Law:

where

™ Gas, N/

density
Light, p=N/V Light,
intensity 1(0) intensity I(1)
and frequency ® [ x ;1 and frequency ®

and o(w) is a frequency-dependent molecular absorption cross section (with
the dimensions of an area).

In this lecture we will develop a microscopic theory for o(w) by considering
the interaction of the light (treated as a classical electromagnetic wave) with
a single gas molecule (treated quantum mechanically) [1].

1.1 Time-dependent perturbation theory

Consider a molecule with internal Hamiltonian H(®) and orthonormal eigen-
states |1, ) (supposed for the moment to be discrete):

where

and

D1 %n) (Pl = 1. (1.3)

n

The corresponding time-dependent states

| 0a(1)) = e ) (1.4)



satisfy

L, d 0
ih= [ ¥a(t)) HO| W, (1)) (1.5)
and
(U (1) | V(1)) = bmn (1.6)
and
W) (¥a(1)| = 1. K

Now subject the molecule to a perturbation /\H(l)(t)7 so that

i w(0) = H (1) w() (1.8)
with

H(t)y=HO + xHW(1), (1.9)
and let

W) =D a(1)) an(t) (1.10)

where a,(t) = (U, ()] ¥()) is the amplitude (and P,(t) = |a,(t)]* is the
probability) for the molecule to be found in the state | ¥, (¢)) at time ¢.

It is straightforward to show that eqs. (1.5) to (1.10) imply the following
evolution equation for the amplitudes a,,():

ih(t) = N> H) () an(t) (1.11)
where
HD(1) = (W () | HO(1) [ (1)) (1.12)

This evolution equation is still exact, but it is generally very difficult to solve
exactly. The standard approach is therefore to assume that A is small and
solve it by time-dependent perturbation theory.

Thus, we set

am (1) = aO () + XalD (1) + X2 aP (1) + - - (1.13)

and require that eq. (1.11) is satisfied to each consecutive order in A:
A ey =0 (1.14)
At ihaD() =3 HO) (1) aO(1) (1.15)



(0)

(etc.) Equation (1.14) integrates to give a’(t) = constant, which is most
conveniently chosen to be a,,(t = 0):

a/(

O(t) = an(0). (1.16)
(1)

This choice implies a;,’(0) = 0, and eq. (1.15) therefore integrates to give
gy — L ' oa
alD(t) = _5;/0 HO) () a,(0) dt’ (1.17)
Combining eqs. (1.13), (1.16) and (1.17) gives
i t
an(t) = an(0) - 7 / N () an(0) df’ (1.18)
—~Jo

to first order in the perturbation parameter A.

Finally, suppose that the perturbation /\H(l)(t) is switched on at time ¢t = 0
when only one initial quantum state n = ¢ of the unperturbed molecule is
populated with amplitude a;(0) = 1. Equation (1.18) simplifies under these
circumstances to give the amplitude in each final quantum state m = f # ¢
at time ¢ as

y 1
agi(t) = _%/0 NH D () dt (1.19)

1.2 Classical electromagnetic radiation

A classical electromagnetic wave is a solution of Maxwell’s equations in free

space [2]
V.E(1) =0 (1.20)

V AE(f) = — 1o M(;ft) (1.21)

V-H(1) = 0 (1.22)

Y AH() = +6 agit) (1.23)

where E(t) is the electric field strength (in Vm~!), H(#) is the magnetic field
strength (in Am™!), ¢ is the vacuum permittivity and pg is the vacuum
permeability (eguo = 1/¢?).



For simplicity, we shall take the incident light to be a plane-polarised electro-
magnetic wave propagating along the laboratory z axis with its electric field
vector in the +z direction and its magnetic field vector in the —y direction
as shown in the diagram above:

E(t) = + Ep sin(kz — wt)k (1.24)

H(t) = —Hy sin(kz — wt)j. (1.25)

This wave clearly satisfies eqs. (1.20) and (1.22). The fact that it must also
satisfy eq. (1.21) implies
k‘E’O = Mo CUHO (126)

and the fact that it must satisfy eq. (1.23) implies
kHy = egwkEy (1.27)
which can be rearranged to give
k=w\euo=w/e (1.28)

and
b = poHE. (1.29)

FEy and Hy are thus related, and the wavelength of the light is A = 27 /k =
2rc/w = ¢/v.



In order to make the connection with the Beer-Lambert Law we shall also
need to know the intensity I of the light. This is defined as the electromag-
netic energy passing through unit area in unit time, and is therefore related
to the average energy density (or energy per unit volume) W of the light by

I=cW. (1.30)

According to electromagnetic theory [2], the energy density of an electric
field Eis Wg = %60 E? and the energy density of a magnetic field His Wy =
Tuo H?. For the sinusoidal electric and magnetic fields in egs. (1.24) and
(1.25) we simply average these energy densities over a period of oscillation:

1 ) w 2w " 1 )
Wg = 5 €0 E§ x o sin“(kz —wt) dt = 1 €0 E§ (1.31)
1 2mfw 1
Wy = JHo HE x %/0 sin?(kx — wt) dt = Mo HE. (1.32)

The average energy density of the light in eqs. (1.24) and (1.25) is thus
1 o, 01 o, 1
W:WE-|—WHI Z€OEO+ Z,u()HO = §€0E0. (133)

1.3 The electric dipole interaction

The dominant light-molecule interaction is usually the electric dipole inter-
action
p-E(t) = p, Eg sin(kz — wt) (1.34)

where

NIEEZIRI—SED (1.35)
I 7

is the total (nuclear and electronic) dipole moment operator of the molecule
and E(?) is the electric field of the light.

As it stands, however, we cannot use p - E(¢) directly as our perturbation
Hamiltonian /\H(l)(t), because the perturbation Hamiltonian operates on
the internal (centre-of-mass) coordinates of the molecule whereas the electric
field E(¢) in eq. (1.34) depends on laboratory coordinates relative to axes
fixed in space. The way around this difficulty is to consider how the electric
dipole interaction affects the molecular translational eigenstates [3]

(F| p) = h=3/2e P/ (1.36)



where p and T are the molecular momentum and centre-of-mass.

In particular, eqgs. (1.34) and (1.36) lead us to consider the matrix element
1 —ip;F/h : i TF/h g
(psl p-E(t) |pi) = 7] € Pr¥it oy, Eg sin(kz — wt) et P/ dF - (1.37)

which can be evaluated by the following argument. Firstly, the dipole mo-
ment operator u, is independent of the centre-of-mass vector r for a neutral
molecule and can therefore be taken outside the integral. Secondly, the
wavelength A of the light is usually much larger than the length of a typi-
cal molecule (eg: the UV /visible borderline is at 4000A, whereas a typical
molecular dimension might be 4A) The molecule therefore only effectively
sees a constant electric field from the light at any instant, corresponding to
the electric field at the molecular centre-of-mass, and the z in the integrand
of eq. (1.37) can therefore be replaced to a good approximation by the z-
component T of r. With these simplifications in hand, the matrix element
can be evaluated to give

2 B . -
(psl| p-E() |pi) = ,uhg < /e_lpf'r/h sin(kT — wt) et PiT/h gx
= Mz Eqy /e—ipf-T/h-l—i(kf—wt)-l—iprf/h _ e_ipf'F/h—i(kf—Wt)—l—ipiT/h .
2ih3
—'uz L —iw tw
- 2i0 [e Yo(ps—pi—pr) — et té(pf_pﬁpk)] (1.38)

where pr = hki = h/Ai is the de Broglie momentum of the light and the
last line follows from the normalisation of the translational wavefunctions
in eq. (1.36) [3]:

(p'Ip)=46(p" - p). (1.39)

Equation (1.38) has a clear interpretation. Either the molecule can absorb
light as a result of the u - E(¢) interaction, in which case its final momen-
tum is py = p; + px and the appropriate internal coordinate perturbation
Hamiltonian is

z E —1
AHO (1) = —}—%e iwt (1.40)
(3

or else it can emit light (by stimulated emission), in which case its final
momentum is py = p; — px and the appropriate internal coordinate pertur-
bation Hamiltonian is

: L Ey ..
AHO (1) = —%e"'“"t. (1.41)
K3



Momentum is conserved either way, provided that the momentum of the
absorbed or emitted light is given by the de Broglie relation p = h/X (which
we know to be true for photons, even though the classical electromagnetic
wave which we have used to derive eq. (1.38) is not quantised and does not
contain any reference to h).

(The momentum transfer from the light to the molecule in eq. (1.38) has a
comparatively small effect, because the momentum of the light is typically
several orders of magnitude smaller than the momentum of the molecule. It
is nevertheless observable with intense enough radiation, and it forms the
basis of laser cooling in atomic traps.)

1.4 Fermi’s Golden Rule

We can now confine our attention exclusively to absorption and substi-
tute the appropriate perturbation Hamiltonian /\H(l)(t) from eq. (1.40) into
eq. (1.12) (with the replacements m — f and n — i as in eq. (1.19)) to give

_ Fy Fy ZWfZ'

NH (1) 57 (Lr(B)] g [ Wi(1)) 7 = — etilori=)t  (1.42)

where

Myi = (¥5 | pz [ i) (1.43)
is the electric dipole transition matrix element between the initial and final
quantum states | ;) and |+f) and wy; = (Ey — ;) /h is the corresponding
transition frequency.

Substituting eq. (1.42) into eq. (1.19) gives the amplitude of the wavefunc-
tion in the final quantum state f at time ¢ as

oty = -1 [ AHD) e
- Fo leZ' t

T 2n o

Fo ﬂ/fﬂ 6+i(wf€_w)t -1

- 2h (wi—w)

e-l—i(Wfi—w)t' dt/

(1.44)

The probability that the final quantum state will be populated at time ¢ is

therefore

2 _ E2| My, |2 1 — cos(wyg; —w)t
2h2 (wﬂ — w)2

Pyi(t) = |agi(t) | (1.45)



and the rate of population of the final quantum state is

d E2| My; | sin(wy; — w)t
ke(t) = —Pgi(t) = 0 fi fi
£i(t) dt 1i(t) 952 (wpi — w)

(1.46)

As time passes, the right-hand-side of this equation becomes increasingly
peaked around wy; — w = 0, and only the resonant transition w = wy;
prevails (just as one would expect to see experimentally). The long-time
limit of eq. (1.46) is therefore particularly important, and this is given by

kyi = Jim kgi(?)

E2 | M i 2 i i —w)t
_BIMGP | sinieri - )
2h t—oo (wﬂ — w)
E2| My |?
=0 5 |2h2f | Té(wg — w). (1.47)

Equation (1.47) is Fermi’s Golden Rule for the asymptotic (¢t — o) transi-
tion rate k¢; [4]. All that remains is to convert this into an expression for the
molecular absorption cross section o(w) and hence derive the Beer-Lambert
Law.

1.5 The absorption cross section

The first step in this direction is to use eqs. (1.30) and (1.33) to eliminate
Ey from eq. (1.47) in favour of the intensity I of the light:

_ ’/Tflﬂ/[ﬂ |2

i = O(wyi —w). 1.48
f oo (wpi —w) (1.48)

Now consider the absorption of radiation with angular frequency w by a
thin slice of the gas with thickness dz perpendicular to the direction of
propagation:



dx

The decrease in the intensity (energy per unit area per unit time) of the
light due to absorption by the molecules in the slice is given by

dl = —CthwfikﬂdtI —thwﬂk‘ﬂdm (1.49)
f f
where p = N/V is the number density of molecules in the slice, hwy; =

E¢— FE; is the energy absorbed per molecule due to the transition from | ;)
to | 9¢), and ky; dt is the probability that a given molecule will make this
transition in a time interval dt = dz/ec.

Dividing eq. (1.49) by dz and making use of Fermi’s Golden Rule for ky;
gives
dl
T =—p ) hwsikg
f
prl

Zwﬂ 6(wﬂ — w) |ﬂfﬂ |2
f

heg e

i
= P Ewé(w—wﬂﬂlwfﬂ?
f

_heoc
= —oi(w)pl (1.50)

where
Tw

oi(w) = hege

Zé(w—wﬁ)|ﬂlﬂ|2 (1.51)
f
is the absorption cross section from the initial quantum state |1);).

10



Equation (1.50) is the differential form of the Beer-Lambert Law

I(0) = 1(0)e=o ! (1.52)

and so completes what we have set out to do. We shall therefore end this

lecture by summarising the approximations that went into its derivation:

1.

The light-molecule interaction has been treated by first-order pertur-
bation theory (which will be valid provided the radiation is not too
intense).

The light has been treated as a classical electromagnetic wave (which is
known to give the right result for absorption and stimulated emission,
although it completely misses the possibility of spontaneous emission

3])-

. Only the dominant electric dipole interaction has been considered

(which will often be a very good approximation).

. The wavelength of the light has been assumed to be much larger than

the length of the molecule (ditto).

. The duration of the perturbation has been assumed to be long enough

for the molecule to recognise the light as a periodically oscillating
electric field (see the limit as ¢ — oo in eq. (1.47)).

. It has been assumed that only one initial quantum state |¢;) of the

molecule is populated when the light is switched on. (This will not
generally be the case in an ordinary absorption experiment, which is
more likely to see a thermally averaged absorption cross section

or(w) = é S oi(w) e BT (1.53)
where

g=Y e B/, (1.54)

However, modern laser experiments are capable of measuring the more
fundamental initial state-resolved absorption cross section o;(w) di-
rectly.)

In the following three lectures we shall investigate the implications of the ex-
pression for the absorption cross section in eq. (1.51) for both bound-bound

electronic spectroscopy and bound-continuum molecular photodissociation.

11



2 Theory of Electronic Spectroscopy

Recall Fermi’s Golden Rule for the absorption cross section

. — Tw _ . . 2
i) = g 38— ) My (2.1)
where
My = (dp | 1 | 93) (2.2)

and e is a unit vector in the direction of the electric field of the light.

In this lecture we shall investigate the implications of eq. (2.1) for ordinary
(bound-bound) electronic spectroscopy [5] in preparation for the extension
to molecular photodissociation in lecture 3.

2.1 Rotational selection rules

The initial and final quantum states | ;) and |%¢) in eq. (2.2) are solutions
of the Schrodinger equation

where H is the full (electronic, vibrational and rotational) Hamiltonian of
the molecule. This Hamiltonian commutes with the angular momentum
operators J% and J,, and we can therefore label the molecular eigenstates
|1,) with quantum numbers .J and M:

[¥n) = Iy My) . (2.4)

The dipole moment operator g in eq. (2.2) is a vector operator with three
Cartesian components yu,, ¢ = z,y,z. However, it is more convenient to
work with the spherical equivalent 7 of y (which is defined by analogy with
the spherical harmonics Y3,,) [6,7]:

1

Hy1 = _ﬁ (M + 1pty) (2.5)
Ho = iz (2'6)
oy = s (s = i), (2.7)

12



The advantage of this definition is that the components of 7 transform more
conveniently under a rotation of the coordinate axes than the components
of p (due again to their analogy with spherical harmonics):

1
By = Y Tk Di() (2.8)
k=—1

where D} () is a Wigner rotation matrix element and Q = afy are the
Euler angles of the rotation.

Equation (2.8) implies that the states i, |7.J;M;) form a basis for the di-
rect product representation I'y X I'j, of the rotation group. Since the states
|fJsM¢) form a basis for the representation I'j,, it follows that all matrix
elements of the form (fJs My | g, |iJ;M;) will be zero by symmetry unless
the direct product I'y, x I'y X Ty, contains the totally symmetric represen-
tation I'g. Evaluating this direct product by repeated application of the
reduction formula [7]

Py xTy=Tpes+Trpgga+-+T 0y (2.9)

shows that Iy, x I'y X I'j, will only contain I'g if either (a)J; > land Jy = J;
or Ji£1,o0r (b) J; =0and J; = 1. We thus obtain the general rotational
selection rule for an electric dipole transition:

AJ=0,41 (J=0J=0). (2.10)

The corresponding selection rules on the projection quantum number M
can be obtained by applying the Wigner-Eckart theorem [6,7] to the matrix
elements of the spherical tensor operator f:

<fJfﬂ/[f | 7. |ZJZLMZ> = <Jfﬂ/[f | Jilﬂfim> <fJf | |ﬁ| |?JZ> (2.11)
where

(FIFNNEI i) = >0 (JpMyg | JAMm) (f I My | T, | iJ;M;) . (2.12)
M;m

The physical content of this theorem is that the matrix element in eq. (2.11)
is the product of two factors, the first of which is a vector coupling coefficient
(JgMy| J;1M;m) which embodies the rotational symmetry of the problem

13



and the second of which is a reduced matrix element (f.J¢ ||| |4.J;) which
contains the dynamics [6,7].

Consider (for example) the case where the electric field vector e of the light
is parallel to the laboratory z axis (as in lecture 1). The relevant dipole
matrix element is then

<fJfﬂ/[f | o |1 M) = <Jf[Wf | Ji1M;0) <fJf [z eJ;) (2.13)

which leads (via a consideration of the properties of the vector coupling
coefficient (J;s My |J;1M;0)) to both the selection rule on J in eq. (2.10) and
the following selection rule on M:

AM = 0. (2.14)

The selection rules on M for other polarisations can also be obtained from
eq. (2.11) with the help of eqgs. (2.5) to (2.7).

(The selection rule on J in eq. (2.10) is often attributed to the conservation of
angular momentum, with a photon of light contributing one unit of angular
momentum to the molecule. This is also clearly a very natural interpretation
of the vector coupling coefficient (J¢My|J;1M;0) in eq. (2.13). However,
note again that the classical electromagnetic wave we have used to derive
eq. (2.10) is not quantised and does not contain any reference to h.)

2.2 The Born-Oppenheimer approximation

We cannot now go any further without actually solving the Schrodinger
equation in eq. (2.3). The standard way to do this is to exploit the different
time scales of electronic and nuclear motion by writing the Hamiltonian
H(r,R) as

H(r,R)=T"(R)+ H*(r,R) (2.15)

where T"(R) is the nuclear kinetic energy operator and H¢(r,R) is the
electronic Hamiltonian (containing the electronic kinetic energy and elec-
tronic and nuclear potential energy operators) at each value of the nuclear
coordinates R.

The wavefunction [¢(r,R)) in eq. (2.3) can then be expanded as
[¥(r,R)) =) [vi(r; R) YE(R)) (2.16)
k

14



where |7 (r; R)) satisfies the electronic Schrédinger equation
He(r,R) [9i(r; R)) = Vi(R) [¢5(r; R)) (2.17)

subject to
(WG R) G R)), = [V Ry iRy dr = a5 (218)

and the eigenvalue V7(R) in eq. (2.17) is an adiabatic electronic potential
energy surface.

Substituting eq. (2.16) into eq. (2.3) and making use of the orthonormality
condition in eq. (2.18) gives a system of coupled equations for the nuclear
wavefunctions

> (@ R)|T™(R) [¥i(r; R) YR(R)), + [VF(R) — E][}(R)) = 0. (2.19)

k

These coupled equations are still exact, but they are generally very difficult
to solve exactly (not least because of the derivatives of excited electronic
wavefunctions with respect to nuclear coordinates that are implied by the
above matrix elements of 7"(R)). The usual way out of this difficulty is to
assume that the electronic wavefunctions vary more slowly than the nuclear
wavefunctions as a function of the nuclear coordinates. The derivatives
of the electronic wavefunctions can then be neglected to leave the Born-
Oppenheimer (adiabatic) approximation

li(r,R)) ~ [$5(r; R) ¢ (R)) (2.20)
where
HP (R (R)) = E[07(R) (2.21)
with
H]”(R) =T"(R)+ V]-e(R). (2.22)

This approximation will be reliable if the j-th electronic potential energy
surface is well separated from the other electronic potential energy surfaces
of the same symmetry in the region of nuclear coordinate space of interest.
This is often the case for the ground electronic potential energy surface of
each symmetry, but it can easily break down for the excited surfaces that
are accessed in electronic spectroscopy and molecular photodissociation. If

15



it does break down, one has to return to a more accurate treatment based
on eq. (2.19), and a discussion of how to do this is given in Schinke’s book
[1]. For the purposes of the present course we shall simply assume that the
Born-Oppenheimer approximation in eq. (2.20) is sufficiently accurate for
both the initial and final quantum states |1;) and |¢¢) in eq. (2.2).

2.3 Electronic selection rules

Now consider what happens when the Born-Oppenheimer approximation is
substituted into the expression for the dipole matrix element in eq. (2.2):

Myi = (05(ri R) GH(R) (e, R) [45(r R)I(R))  (2.23)

where
ulr,R) = () + 1'(R). (2.24)

Two distinct cases arise, depending on whether or not the initial and final
electronic wavefunctions |¢7(r; R)) and |¢5(r; R)) are the same.

If [¢7(r; R)) and [9(r; R)) are the same, as in vibrational-rotational or pure
rotational spectroscopy, we can use the fact that [¢¢(r; R)) is normalised to
write eq. (2.23) as

My = (¢7(R) | pi(R) [ 4] (R))r (2.25)

where
pi(R) = (95 (r; R) [pf(r) [ (r; R)), + p"(R) (2.26)

is the dipole moment of the molecule in the electronic state |¢{(r;R)). We
thus obtain the gross selection rules for vibrational-rotational and pure ro-
tational spectroscopy, namely that the molecule must have a permanent
dipole moment yu;(R) # 0 at its equilibrium geometry in order to exhibit a
microwave absorption spectrum and a permanent dipole moment gradient
Vrwi(R) # 0 in order to exhibit an IR spectrum (so that the matrix ele-
ment My; in eq. (2.25) does not vanish by virtue of the orthogonality of the
initial and final vibrational wavefunctions).

If on the other hand |¢%(r; R)) and [¢{(r; R)) are different, as in electronic
spectroscopy, we can use the fact that they are orthogonal to write eq. (2.23)
as

My = (07 (R) [ usi(R) [ 97 (R))R (2.27)

16



where

pri(R) = (P3(rsR) [p(r) |97 (r; R))y (2.28)
is the electric dipole transition matrix element for the electronic transition.
This transition matrix element is the origin of electronic selection rules.

Consider (for example) the case of a heteronuclear diatomic molecule. The
dipole moment operator uf(r) will have one component parallel to the in-
ternuclear axis (X1) and two degenerate components perpendicular to the
axis (II), and the initial and final electronic wavefunctions |¢f(r;R)) and
[¥3(r; R)) will be bases for irreducible representations I'; and I'} of C'cyp. A
parallel electronic transition will therefore be forbidden (i.e., ps;(R) will be
zero) unless the direct product T'G x Tt xT¢ = I's X I'f contains the totally
symmetric representation ¥ 7. This implies that I's = I'f, which gives the
electronic selection rule

AN=0  (usillR) (2.20)

for a parallel electronic transition in a heteronuclear diatomic. The corre-
sponding selection rule for a perpendicular transition

AA = £1 (Nfi 1L R) (230)

follows similarly from the direct product I'S xIIxTE, and electronic selection
rules for other molecules are obtained in the same way.

2.4 Vibrational Franck-Condon factors

Having now dealt with electronic selection rules we can dispense with the
electronic part of the problem and assume that us;(R), VF(R) and V(R)
are known. We can also dispense with the ns in eq. (2.27), because every-
thing from this point on will be confined to the nuclear motion.

With this accepted, eq. (2.27) becomes

Myi-e = (¥5(R) [ psi-e| ¥i(R))g (2.31)

where |1;(R)) and |¢(R)) are the initial and final ro-vibrational wave-
functions of the molecule and ps;(R) is the dipole matrix element for the
electronic transition.

17



It is instructive to consider eq. (2.31) in more detail for the special case of a
1Y 1 % electronic transition in a diatomic molecule. This case is uniquely
simple because the initial and final ro-vibrational wavefunctions can each be
written exactly as the product of a vibrational and a rotational function:

|¢Z(R)> = |‘¢vz‘Jz‘(R) YJ:‘Mz‘(Rp (2-32)
[¥#(R)) = [tu,0,(R) Y5, m,(R)). (2.33)

Furthermore, since AA = 0 for a ¥ < ¥ transition, we know from eq. (2.29)
that the dipole transition matrix element ps;(R) will be parallel to R:

pri(R)-e = psi(R) Ree (2.34)

(where pg;(R) is the length of the vector uys;(R)). The matrix element in
eq. (2.31) therefore factors exactly into a product of vibrational and rota-
tional matrix elements

Myi-e = (Yu, 0, (R) | psi( R) | u,0,(R)) R
X (Yi,m,(R) | Ree| Yiarn (R)g (2.35)

the first of which contains the vibrational dynamics of the transition and
the second of which is responsible for rotational selection rules.

When the electric field vector of the light is parallel to the laboratory z
axis, so that R-e = cos 6, the rotational matrix element in eq. (2.35) can be
worked out analytically and leads to the specific rotational selection rules
AJ = £1 and AM = 0. If these selection rules are satisfied, the matrix
element is just a number

fr,0m: = (Yo, (R) | Ree | Yy (R)) g (2.36)

and since this number is the same for all vibrational bands v it need not
concern us any further.

The interesting part of eq. (2.35) is the vibrational matrix element. This
can be simplified by noting that the vibrational wavefunctions |t,,7,(R))
and |tb,,5,(R)) will often depend only weakly on the rotational quantum
numbers .J; and J, especially for low rotational quantum numbers, and that
the electronic dipole matrix element pg;(R) will often be a slowly varying
function of R in the region R ~ R. where |¢,,7,(R)) is significant.
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We can therefore make the Condon approximations [10]

s (R)) = [0(R)) (2.37)
pgi(R) ~ pgi(Re) (2.39)
which reduce eq. (2.35) to
Myie = psi(Re) (Yu0 | Yu0) f1,0:0; (2.40)
and hence
| Myie [* = [pgi(Re)* (g0 | $u0)|” L fapaanl (2.41)

The intensity of the transition from the initial state ¢ to the final state
f is thus proportional to three factors, one electronic, one vibrational,
and one rotational. Of these, only the vibrational Franck-Condon factor
[(%u;0 | ‘¢"v¢0>|2 depends on the final vibrational quantum number vy, and
this factor is therefore responsible for the different intensities of different
vibrational bands. We thus obtain the standard picture of electronic spec-
troscopy shown on the next page, in which the Franck-Condon principle and
the Correspondence principle combine to explain the observed vibrational
structure in an electronic absorption spectrum [10]. A similar result can also
be derived for polyatomic molecules by considering an adiabatic separation
of vibrations and rotations.

2.5 Summary

This completes our discussion of the information that can be extracted from
the expression for the absorption cross section in eq. (2.1). Much of this
information applies equally well to molecular photodissociation as it does
to electronic spectroscopy, including in particular everything we have said
about the Born-Oppenheimer approximation and selection rules. Neverthe-
less, eq. (2.1) cannot be used directly to describe photodissociation, because
it involves a sum over a discrete set of final molecular quantum states. We
shall return to eliminate this problem in lecture 3.
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3 Theory of Molecular Photodissociation

Recall that the absorption cross section for a bound-bound electronic tran-
sition can be written within the Born-Oppenheimer approximation as

S 6w — wp) (s | pgive [) (3.1)
f

TW

oi(w) =

i) hege
where [1;) and |i)f) are the initial and final ro-vibrational wavefunctions of
the molecule and py; is the electric dipole transition matrix element for the
electronic transition.

We shall begin this lecture by rearranging eq. (3.1) into a form that does
not involve an explicit sum over a discrete set of final quantum states and
therefore applies equally well to both bound-bound electronic spectroscopy
and bound-continuum molecular photodissociation.

3.1 The absorption spectrum

The first change that is needed to get eq. (3.1) into a more useful form is to
replace the delta function in w with a delta function in £:

6(w—wys)=h6(E - Ey) (3.2)

where F/ = hw and Ey; = Ey — F;. In particular, if we choose the zero of
the energy scale to be the energy of the initial quantum state F;, eq. (3.1)

becomes e
oi(w) = ’606 Pi(E) (3.3)
where
PAE) =Y (xi|¥5) 6(E = Eg) (%5 xi) - (3.4)
f
with
IXi) = pgive|¥i). (3.5)

The absorption cross section o;(w) is thus proportional to w times an ab-
sorption spectrum P;(£), and we shall concentrate on P;(£) from this point
on to save having to carry the constant of proportionality.

The aim is now to eliminate the sum over f from the expression for P;(£)
in eq. (3.4), and this can be achieved as follows. The final ro-vibrational
wavefunction [1y) satisfies the time-independent Schrédinger equation

H|¢s) = Ex|¢y) (3.6)
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subject to the usual conditions

(g g) = 8pr (3.7)
and

Dol (sl =1 (3.8)
7

where H is the Hamiltonian of the molecule on the final Born-Oppenheimer
electronic potential energy surface V.

Now it is easy to show by induction that eq. (3.6) implies
H"|¢g) = E¥|¢y) (3.9)
for any integer n > 0, and therefore that
P(H)|s) = p(Eg)ldy) (3.10)

for any polynomial function p(H ) (and more generally for any function with
a convergent power series expansion). This equation can be inverted by
multiplying both sides by the operator p(H ) 'p(E;)~" to give

p(H) ™) = p(Ef) ™ |vy) (3.11)
and this in turn can be combined with eq. (3.10) to give

p(H) 'q(H)|s) = p(Ep) ™ q( Ef)|ey) (3.12)

where p(H) and ¢( H) are arbitrary polynomial functions of H. Hence the
general eigenvalue equation

SfCH)|dg) = f(Ef)|9s) (3.13)

and the corresponding spectral representation
FUH) = FOH)Y [0 (sl = Do 10s) F(Es) (0 (3.14)

f f

are both guaranteed to hold for a large class of “sensible” functions f(H)
(including all rational functions of the form p(H ) 'q(H) where p(H) and
q(H) are either polynomials or transcendental functions like sin(H) and
cos( H) with convergent power series expansions).
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Equation (3.14) is clearly very similar to eq. (3.4), except that the delta
function 6(E — Ey) in eq. (3.4) is not a proper function and cannot be
classified as “sensible”. The solution to this difficulty is simply to write the
delta function as the limit of a pre-limit delta function é.(F — H) which can
be used in eq. (3.14). (This is, after all, where the delta function came from
in the first place — see eq. (1.47) in lecture 1.) Thus

Pi(E) = Tim > (xi| $5) 6(E = Ey) (s | xi) (3.15)
T
can be written as
P(E) = lim (xi [ 8(E = H) | x:) (3.16)

where (for example)

6(E — H) = (i)l/Qe—(E—H)Q/e _ (i)m i CE=HP/ g

|
TE mTe "0 n.

is a sensible function with a convergent power series expansion.

Equation (3.16) for the absorption spectrum P;(£) is the single most impor-
tant result in this lecture. Since it does not contain any reference to a dis-
crete set of final quantum states it applies equally well to both bound-bound
electronic spectroscopy and bound-continuum molecular photodissociation.
Furthermore, as we shall see below, it leads directly to all of the usual time-
dependent and time-independent methods for calculating photodissociation
cross sections simply by choosing different expressions for the pre-limit delta
function 6.(£ — H).

3.2 Time-dependent theory

One of the most familiar representations of the delta function is the Fourier
representation

1o
§(E—H) = ﬁ/_ eHE=H)/h gy (3.18)

which we have already used at least once (albeit in a slightly different form)
in section 1.3. The limit as ¢ — 0 has already been taken in eq. (3.18); two
possible pre-limit versions are

1
Th

0 (K —H)= Re/ ptilE+ie=H)t/h 1,
0

23



1 1
= zhe [E+i€—H]
1 €
IR (319
and
§(E— H) = 1 he /0 HilB—ie=H)t/h gy
¢ h ) e '
1 —1
= zhe [E —ie— H]
1 €
STE-HPETE (3:20)

both of which are rational functions of H and can therefore be used in
eq. (3.14).

It is slightly more natural to use the delta function in eq. (3.19), which
involves an integral over positive ¢. When this is substituted into eq. (3.16)
we obtain the absorption spectrum P;(F) as the (half) Fourier transform of
an autocorrelation function C;(t) [11]

P(E) = lim iRe/ PRt di (3.21)
e—0 Th 0
where ' '
Ci(t) = (x; | e H=R |3y (3.22)

Notice in particular that the integral over ¢ in eq. (3.21) is guaranteed to
converge by virtue of the factor e~/ in eq. (3.22). This factor must there-
fore be included (in general) when doing the calculation and the limit as
€ — 0 taken at the end.

Equations (3.21) and (3.22) have a very appealing physical interpretation.
The initial ro-vibrational wavefunction |;) of the molecule is first projected
onto the final electronic potential energy surface to give an initial wavepacket
IXi(0)) = pgi-e |;) at time t = 0. This wavepacket then evolves in time on
the excited surface as a solution of the time-dependent Schrédinger equation

xi(1)) = e~ =9 xi(0) (3.23)

and the overlap of the wavepacket at time ¢ with the wavepacket at time 0
gives the autocorrelation function

Cit) = (a0) i) - (3.24)
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Finally, the absorption spectrum (or power spectrum) P;(F) correspond-
ing to this autocorrelation function is given by the time-to-energy Fourier
transform in eq. (3.21).

The advantage of this picture is that it allows one to unravel the dynamics
of the photodissociation either by studying the behaviour of P;(F) or by
studying the behaviour of C;(t¢), whichever happens to be the most conve-
nient. We shall illustrate this advantage in the next section by considering
the contrasting cases of direct photodissociation and bound-bound electronic
spectroscopy.

3.3 Resonances and recurrences

Consider first the case of direct photodissociation shown below, where the
wavepacket simply departs the Franck-Condon region and dissociates:

A

[y
T T Ll

FC region Dissociation coordinate R
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It follows from eq. (3.24) that the autocorrelation function C;(t) will decay
smoothly in this situation from its initial value C;(0) = (x; | xi) to zero. This
behaviour can be modelled (for example) by the complex Gaussian function

Cilt) = (xi | x) 7/ GAD =t/ (3.25)

which involves two parameters At and FEy (corresponding respectively to
the characteristic time scale of the decay and the mean energy contained in
the initial wavepacket). This model for C;(?) is straightforward to Fourier
transform and leads to the following expression for the absorption spectrum
Pi(E): )

—(E—Ey)?/2AE?

PAE) = e (il Xi) € (B-Eo)*/ (3.26)
where AE = h/At. The absorption spectrum for direct photodissociation
will thus simply be a broad featureless curve centred on the mean energy
Fy with a width that reflects the time taken for the wavepacket to leave the
Franck-Condon region (and therefore, from Ehrenfest’s theorem, the slope
of the final electronic potential energy surface V¢ in the Franck-Condon
region):

i) P(E)

o At o AE

Direct Photodissociation

26



At the other extreme, consider the case of bound-bound electronic spec-
troscopy (an appropriate diagram for which was given at the end of lecture
2). The absorption spectrum for this case is given by eq. (3.4) as a series of
sharp lines weighted by Franck-Condon factors |(x; | ¢f>|2:

PAE) =Y |(xi | 9| 6(E - Ej). (3.27)
1

The inverse Fourier transform of this equation gives the autocorrelation
function C;(t) as

City= [ e EIPE AR = S et et (3.28)
. f

where wy = FEf/h is the angular frequency associated with the final ro-
vibronic energy level Ey. It follows that |C;(¢)| will remain of the same
order of magnitude as its initial value |(x;|x;)| for all time and exhibit a
complicated pattern of oscillations that reflects the interference between the
different terms in eq. (3.28), in complete contrast to its behaviour in the
case of direct photodissociation considered above:

|C.t)] P.(E)

Electronic Spectroscopy
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It should now be easy to visualise the behaviour of both C;(t) and P;(E)
for the case of indirect photodissociation, which lies between the direct pho-
todissociation and electronic spectroscopy extremes. Here most of the initial
wavepacket leaves the Franck-Condon region never to return, but at least
some fraction returns at regular intervals giving rise to recurrences in C;(t).
The resulting absorption spectrum depends on the strength of the recur-
rences. If the recurrences are strong, the situation will be closer to the elec-
tronic spectroscopy extreme and the absorption spectrum will be dominated
by narrow resonances. However, if the recurrences are weak, the situation
will be closer to the direct photodissocation extreme and the absorption
spectrum will consist of a broad envelope modulated by diffuse vibrational
structure as shown in the diagram below. We shall give some examples of
how both types of behaviour can be found in real systems at the end of
lecture 4.

i) \ P(E)
/\\ VAN
t

Indirect Photodissociation
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3.4 Time-independent theory

An entirely equivalent time-independent theory for the absorption spectrum
follows from the expression for the pre-limit delta function in the second line
of eq. (3.20):

5.(E—H)= %Im G(E) (3.29)

where
0
G (E) = %/ etilB=ie—Ht/h gy — (B —je— H)™ (3.30)

is the incoming-wave scattering Green’s function (see Miller’s lecture notes).
In particular, substituting eq. (3.29) into eq. (3.16) gives

P(E) = lim “in{x; |G (E) | (3.31)

which shows that the absorption spectrum can be calculated at each required
energy as a diagonal matrix element of the Green’s function. (Note also that
the limit as € — 0 must again be taken at the end of the calculation, because
the Green’s function in eq. (3.30) is not properly defined in the limit as ¢ — 0
when F is in the continuous spectrum of H [8].)

Although eq. (3.31) is equivalent to eq. (3.21), it is not generally so useful
from the point of view of understanding the photodissociation dynamics so
we shall not discuss it any further.

3.5 Partial cross sections

Everything we have said up to this point has been confined to the calculation
of the total absorption spectrum from a given initial state P;( £), and hence
from eq. (3.3) the corresponding total absorption cross section o;(w). How-
ever, it is equally important to be able to calculate the partial absorption
cross section of;(w) into each final quantum state f of the photofragments
in order to simulate experiments with product quantum state resolution.
This partial absorption cross section is proportional to w times a partial
absorption spectrum Pg;(E)

o1ilw) = PrF) (3.32)
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and we shall work again with Pg;(E) rather than oy;(w) to save having to
carry the constant of proportionality.

Although we have avoided them up to this point, it is difficult to develop a
theory for Py;(£) without introducing continuum wavefunctions. We shall
therefore begin with the continuum analogues of eqs. (3.6) to (3.8):

H |9y (B)) = E[¢;(E)) (3.33)

where
(V7 E) |7 (E)) = 85:46(E' — E) (3.34)
and

> [107(ENwr (B)ldE = 1. (3.35)
f

These equations have been written assuming that [¢); (£)) is energy-normal-
ised (asin eq. (3.34)), and it should be emphasised again that the sum over f
in eq. (3.35) is a sum over photofragment quantum states rather than a sum
over molecular bound states as in eq. (3.8). Note also that the minus sign
in [¢p; (E)) refers to the scattering boundary conditions, which have been
chosen here to correspond to incoming waves in all open photofragment
channels plus a scattered outgoing wave in channel f.

Equations (3.33) and (3.35) can be combined using an argument identical
to the one in section 3.1 to show that the continuum version of the spectral
representation

s = Y [ 1oy () ST (8)]dE (3.36)
f

holds for the same class of functions f(H ) as the discrete version in eq. (3.14).
It therefore holds for a pre-limit delta function of the form in eq. (3.17) (or
eq. (3.19) or eq. (3.20)):

0B = ) = 3 [ W7 (Eo(E - BN (BB (337)
!

Furthermore, in contrast to the situation in eqs. (3.21) and (3.31), where it
was essential not to take the limit as ¢ — 0 until the end of the calculation,
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the right-hand side of eq. (3.37) can be taken to the limit without any
difficulty because of the integral over E’:

§(E—H)=limé.(E— H)
= [l (ENaCE ~ B ()] B
f
= YT () (7 (B). (3.38)
f

Substituting eq. (3.38) into eq. (3.16) immediately gives the total absorption
spectrum P;(F) as a sum of partial absorption spectra Ps;(F) into each final
photofragment state:

P(E) =) Pri(E) (3.39)
f

where
Pri(E) = (07 (E) | Xl (3.40)

However, we still have to solve the Schrédinger equation in eq. (3.33) sub-
ject to appropriate scattering boundary conditions to obtain the scattering
wavefunction [¢; (E)).

The standard way to do this is to use the Lippmann-Schwinger equation [8],
which rolls the Schrédinger equation and the scattering boundary conditions
into one (see also Miller’s lecture notes on scattering theory):

(07 (E)) = |¢5(E)) + lim GT(E)Vy |65 (F)). (3.41)

Here G~ (F) is the incoming-wave scattering Green’s function in eq. (3.30),
|¢¢(F))is an energy-normalised regular solution of the Schrédinger equation
for the free photofragments in channel f, and V; = H — Hy is the corre-
sponding interaction potential. The regular wavefunction |¢¢(F)) can be
represented explicitly (in the simple case where there is no orbital angular
momentum) as

1/2
mﬂ@wwzﬁﬁa) sin(ky Ry) |5) (342)

where |¢¢) is the internal quantum state of the photofragments in channel

fand kf = /2us(E — E¢)/h is the channel wavevector.
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Substituting eq. (3.41) into the integral in eq. (3.40) gives

(7 (F) i) = (65(E) D) + lim (G (E)Vy 65(E) | xa)
= (65(E)| xi) + lim (65(F) |VsGH(E) | xi)  (3.43)

where GT(F) is the adjoint of G~ (E):
1

-5 etilBFie—Mt/h gy — (B 4ie— H)™". (3.44)
0

GT(E) =
The first integral in eq. (3.43) can be evaluated by quadrature, because
|x:) and |¢¢(E)) are both known, and the second can be evaluated using a
time-dependent method based on the above expression for GT(F):

(64(E) | V;GHE) | xi) = —% /OOO B CL(B ) di (3.45)
where
Cri(E 1) = (¢5(E) [ Vi [xi(1)) (3.46)
and
(1)) = e TR (3.47)

is the wavepacket at time t.

The time-dependent calculation of a partial absorption spectrum Py;(E) =
(Y5 (E)| xi)|? is therefore just as straightforward as the calculation of the
total absorption spectrum P;(F) in eq. (3.21): one simply calculates the
correlation function C'y;(F,t) as the wavepacket evolves and then Fourier
transforms it to obtain the “hard part” of the Franck-Condon overlap inte-

gral (47 (E) | vi).

This is all we shall have time to say about partial absorption cross sections.
(A more detailed discussion can be found in Schinke’s book [1].) In the
next lecture, we shall describe how the formal equations of this lecture can
be converted into numerical methods for calculating photodissociation cross
sections and then end with some illustrative examples of resonances and
recurrences in the photodissociation dynamics of triatomic molecules.
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4 Numerical Methods and Examples

Recall the three main equations for the time-dependent calculation of an
absorption spectrum

Pi(E) = lim L Re / e EYRC (1) di (4.1)
e—0 T 0
where o
Cilt) = (xi | e =N | ) (4.2)
and
[Xi) = pyice i) (4.3)

We shall begin this lecture by showing how appropriate representations of
the Hamiltonian H and the convergence parameter —¢e can be used to con-
vert these equations into a numerical method, and we shall end it with some
example applications to the photodissociation of triatomic molecules.

4.1 Representation of H

It is well established how to set up a matrix representation of the Hamilto-
nian H for any triatomic or tetratomic molecule of interest. In the termi-
nology of Light and co-workers [14], one can use either a variational basis
representation (VBR) or a discrete variable representation (DVR) in each
degree of freedom. Both of these representations have their advantages,
and the best one to use depends on the circumstances. We shall therefore
illustrate both approaches by considering the case of a triatomic molecule
in which the angular coordinates are represented in a VBR and the radial
coordinates are represented in a DVR.

An appropriate Hamiltonian H for a triatomic molecule ABC is

h2 82 h2 82 12 j2
=g oot 2t
2ur OR?  2pu, Or 2urR

Q,UTTQ + ‘/(Rv T77) (44)
where R is the distance from BC to A, r is the distance from B to C,
ur = mampc/mapc and [% are the reduced mass and squared angular
momentum operator associated with R, g, = mgpmc/mpc and 42 are the
reduced mass and squared angular momentum operator associated with r,
and « is the angle between R and r:
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Angular VBR

A convenient set of basis functions to use to represent the angular coordi-
nates R and t are the body-fixed axes (BF') functions [15,16]

2J+1
47

1
VMR = ) = () Va0 v ()
where Q = (V,0, ®) are the Euler angles which take the space-fixed axes
onto the body-fixed axes shown above (© and ¢ are the spherical polar
angles of R in the original space-fixed axis system and ¥ is a right-hand
axis twist about R which brings r into the 2’2" plane) and Dk]M is a Wigner
D function in the passive convention used by Pack [15,16].

These functions are simultaneous orthonormal eigenfunctions of the com-
muting angular momentum operators J? = (j + 1)2, 5%, J,, J. and j.,
where J,, and j, are the operators for the projection of J and j on the
body-fixed 2’ axis along R.:

JPYIM =r2 I+ 1) YRM (4.6)
PR =G+ )Y (4.7)
LYM=nMYyM (4.8)
S VM =h kYIM (4.9)
G VM =h kYIM (4.10)

//yﬂ%M'(v,Q)*yﬁM(%ﬂ) siny dy dQ = 65760 8jrjbpk. (411)
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The main advantage of the BF functions is that they lead to a very simple
representation of the potential energy operator

VRO = [ [ VI, V(R 79 PIM (7, 2) siny dy g
=27 6k/k/ Yie(7,0)"V(R,7r,7) Yir(7,0) sinydy  (4.12)
0

where the simplification in the second line comes from integrating out the
Euler angles €2 that define the orientation of the triatomic triangle in space.
The final one-dimensional integral over v in eq. (4.12) can be done numeri-
cally by quadrature.

The representation of the rotational angular momentum operator j2 is also
trivial in view of eq. (4.7). This leaves the orbital angular momentum op-
erator /2, the matrix elements of which can be evaluated using the ladder

equations
J+ DiM(Q) = CTI_Lk DiilM(Q) (4.13)
where
Jr = Jp Fidy (4.14)
and
Jx Yir(7,0) = €} Yiix1 (7,0) (4.15)
where
Jt = Jor £ igy (4.16)
with

N

CEy =hA(A+1)- B(B+1)]z. (4.17)

(The difference between J4 and jy in eqs. (4.14) and (4.16) arises because J
is an external angular momentum whose components (J,+, J,/, J,s) relative
to body-fixed axes satisfy anomalous commutation relations J A J = —ihJ
whereas j is an internal angular momentum whose components (., j,/, 72/)
satisfy the ordinary angular momentum commutation relations jAj = +ihj.)
Hence:

J
(), = (MR (3 = )| TM k)
Ik 5k

= (JMGFK|J* + 5% =23 -j| IMjk)
= (JMG'K | J* + 52 = 200j0 — Jyjyp — J_j_ | IMjk)
=015 Dyjrbrr — Cjkcﬁ(sk’k-}-l - C;kcj_kék‘k—l] (4.18)
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where

Dy =R*[J(J+ 1) +5(+1)—2k*]. (4.19)

Parity under the coordinate inversion R — —R and ¥ — —1 can also be
exploited by defining parity-adapted linear combinations of the BI' angular
functions in eq. (4.5), and this final nicety is worth implementing in practical
calculations because it reduces the range of the helicity quantum number
k from —min(J,7)...4+ min(J,j) to 0...min(.J,j) in one parity block and
1...min(.J,j) in the other [15,16].

Radial DVR

One of the simplest ways to represent the radial coordinate R is to use a
particle-in-a-box DVR in a finite interval 0 < R < Ryax [17]. This DVR
involves a set of ngp — 1 equally spaced grid points

R,=pAR forp=1,2,...np—1 (4.20)
where AR is the grid spacing
AR = Ruyax/"R- (4.21)

The grid representation of the radial kinetic energy operator is

h? 82 hQ ngp—1 )
(_QTRW)M - AR nZ::l Pu(Ryr) ¢ (Ry) (4.22)

where ¢, (R) is the n-th particle-in-a-box eigenfunction

Gn(R) = (2/ Rumax)? sin (07 R/ Runae) - (4.23)

Colbert and Miller have shown how the sum in eq. (4.22) can be worked out
analytically with these functions to give [17]

RGN IR { (nk+1)/3= Sy 0 =p (4,
QIMR 8R2 p'p ; QIMR 2}z]?nax Sp/—p - Sp’+:0 if p/ 7£ p ‘

where

Sy = (=1)F/sin?(kn/2ng) for k =1,2,...2(ng — 1). (4.25)
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The corresponding representation of the potential energy operator is simply

V(1 7)ptp = 6ppV (Rps 757) (4.26)

and a similar representation can also be used for the other radial coordinate
rin eq. (4.4).

The above equations can therefore be combined to obtain a matrix repre-
sentation of the Hamiltonian H in eq. (4.4) in which the angular coordinates
R and f are represented in a VBR and the radial coordinates R and r are
represented in a DVR:

H;;]’q'j’k’,quk = (TR)p’p 6q’q6j’j6k’k + (TT)q’q (5p;p6j/j6k/k
J
+ LQ)”“'”’“& b + F250+1)
Q/IJRRZQ) rprragriy 2#7’7’.3
+ V(Rp,rq)j/k7jk6p/p6q;q6k/k. (427)

6p’p6q’q6j’j Ok'k

Notice in particular the sparsity of the representation, and the fact that
the term involving /2 is the only one that depends on the total angular
momentum quantum number J. Similar mixed (radial DVR and angular
VBR) representations can also be derived for tetratomic molecules.

4.2 Representation of —ie

Now consider the factor e™¢? in eq. (4.2), which guarantees the convergence

of the integral over ¢ in eq. (4.1). The question is how best to represent this
factor on a finite grid, and the usual solution to this problem is to regard

Vabs = —1€ (4.28)
as a coordinate-dependent absorbing potential which absorbs the wavepacket

xi(1)) = e~ =9 xi(0) (4.29)

as it approaches the boundary of the grid. Since all of the wavepacket will
eventually reach the boundary of the grid in a continuum problem this guar-
antees the convergence of the time integral, and since the absorbing potential
can be taken to be zero in the interaction region it also corresponds (in a
practical sense) to taking the limit as € — 0 in eq. (4.1). (See also Miller’s
discussion of the réle of —ie in time-independent reaction rate theory.)
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It is not difficult to construct such an absorbing potential. For example,
Neuhauser and Baer [18], Child [19], and Seideman and Miller [20] have all
shown (in different ways) that the simple negative imaginary potential

Vabs(R) = =V (R — Rabs)/ARabs (4.30)

where

A]'?uabs = Rmax - Rabs (431)

will be effective in absorbing the components of the wavepacket with trans-
lational energies F; that satisfy

1 3
EZ|C <V <CE? (4.32)

where

C = (2ur/h?)2 ARups/ 10 (4.33)

and the numerical factor of 10 in the denominator of eq. (4.33) guarantees
99% absorption according to Child’s analysis [19].

The first inequality in eq. (4.32) arises because the absorbing potential must
be strong enough to give complete absorption over the range AR,ps and
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the second arises because it must also turn on slowly enough to avoid any
appreciable reflection. Both inequalities can be satisfied by making AR,ps
large enough, and it follows in particular from eqs (4.32) and (4.33) that
AR.ps must be larger than the de Broglie wavelength at Fy:

ARaps > (5/7)A (4.34)

where

N

A= h/(2urEy)?. (4.35)

The lesson to be learned from this is that the low translational energy com-
ponents of the wavepacket are more difficult to absorb than the high trans-
lational energy components, because they correspond to longer de Broglie
wavelengths A and hence require larger absorbing regions A R,ps. This lesson
is also independent of the form chosen for the negative imaginary potential,
because Seideman and Miller’s analysis [20] shows that A R,ps must be larger
than A for the more general absorbing potential

Vabs(R) = —iVI[(R — Rabs)/ARabs|" . (4.36)

In practice, the absorbing potentials in eqs (4.30) and (4.36) can be made to
work well despite the difficulty with low translational energies, and they have
been used in a great many successful calculations. In order to apply these
potentials to the triatomic problem considered in section 4.1 one simply
has to note that the molecule can (in general) dissociate along either of the
radial directions R or 7, so the appropriate mixed (angular VBR and radial
DVR) representation of —ic is

(_ie)p/q'j/k',quk = [‘/a.bs(Rp) + ‘/abs('rq)] 6p/p6q'q6j/j6k'k (437)
where Vyps(r) is defined similarly to Vaps( R) (although perhaps with different
parameters V7 and Arapg).

4.3 Wavepacket propagation

The only remaining problem is how to evolve the initial wavepacket | x;(0))
to give | x;(t)) as in eq. (4.29). A large number of different methods have
been proposed for this purpose [12], but here we shall simply discuss what
is generally regarded as being the best one to use for a time-independent
Hamiltonian [21]:
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The Chebyshev method

This method is based on the Chebyshev polynomial expansion of e~*!
et = > an(t) Th(w) (4.38)
n=0

where

an(t) = 2 _:"0) /_11 (E:tf;)(sz dw = (2 — 8,0)(—i)"Ju(t).  (4.39)

(The first equality in eq. (4.39) follows from the orthogonality of the Cheby-
shev polynomials 7},(w) and the second follows from the expression for the
Fourier transform of the Bessel function .J,,(¢) in eq. (11.4.24) of Abramowitz
and Stegun [9].)

Equation (4.38) only holds for —1 < w < 1, but it is easy to scale it to the
range a < z < b:

et = gmiwt z_: an(Azt) T, (w) (4.40)
where
T=(b+a)/2 (4.41)
and
Az =(b—a)/2 (4.42)
and
w=(z-7)/Az. (4.43)

Moreover this scaled version can be applied directly to the evolution operator
exp(—1Ht/h) (ignoring for simplicity the effect of the imaginary convergence
factor —ie€) by interpreting = as the hermitian operator 2 = H/h and ha and
hb as the lowest (Fmin) and highest (Fiyay) eigenvalues of H (in a matrix
representation like eq. (4.27)):

e—iHt/h _ —iEt/h Z an(AEL/H) Ty Huormn) (4.44)
n=0
where
E = (Emax + Emln)/2 (445)
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and

AE = (Emax — Fumin)/2 (4.46)

and
Hyorm = (H — E)/AE. (4.47)
The expansion coefficient a,(AEt/h) in eq. (4.44) is given by eq. (4.39) as
an(AEt/R) = (2 — by0)(—1)"J(AEt/R) (4.48)

and since the Bessel function J,,(AEt/h) decreases exponentially with in-
creasing n beyond n = AFt/h one can replace eq. (4.44) to a very good
approximation with

N
e N o = EEN" g, (AEt/B) Ty Huorm) (4.49)
n=0
where (for example)
N = [AEtya/A] + 10. (4.50)

Equation (4.49) is the central equation of the Chebyshev propagation method
[21]. In order to apply it to the evolution of a wavepacket one can use the
recursion relation satisfied by the Chebyshev polynomials to write

_ N
xi(2)) = e FPi(0)) ~ e FUR N a0, (AEL/R) |xn) (4.51)
n=0
where
IXn) = Tn(Hnorm) |Xi(0)) (4.52)
gives
Ix0) = [x:(0)) (4.53)
|X1> = Hyorm |X0> (454)
and
[Xn+1) = 2Hnorm |Xn) — |Xn-1) formn=1,2,...N — 1. (4.55)

Each of the last N terms in eq. (4.51) can thus be evaluated with one appli-
cation of the scaled Hamiltonian Hyomm in eq. (4.47) on a state vector, and
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this is greatly facilitated (in the triatomic case) by exploiting the sparsity of
the mixed (angular VBR and radial DVR) representation of H in eq. (4.27).

The general features of the Chebyshev method are that it is capable of very
high accuracy (because the errors are distributed almost perfectly uniformly
over the spectrum Fpin < H < Epax of H) and it is also very efficient when
properly applied [12]. However, in order to apply it properly it is essential
to make AF in eq. (4.46) as small as possible (bearing in mind the range of
energies contained in the initial wavepacket) in order to reduce the required
value of N in eq. (4.50). This is also possible to arrange using the mixed
representation of H in eq. (4.27), but it requires a few dirty tricks (like
shelving the potential at a cut-off Vi,ax and restricting the range of the
rotational angular momentum quantum number j to a value jmax(Rp,7q,J)
that depends on Ry, r, and J) which have to be implemented fairly carefully.

4.4 Examples

There would be little point to these lectures if photodissociation dynamics
were not very interesting. Therefore, to end this lecture course, here are
two contrasting examples of indirect photodissociation which make it all
worthwhile. The quantum mechanical parts of both of these examples can
be reproduced (if you want to do this) using the numerical methods described
above.

Diffuse structure in the photodissociation of CO5

This example concerns the recently solved problem of how to assign diffuse
vibrational structure in molecular photodissociation spectra [5,22-24]. Fig-
ures 1 and 2 show the modulus of the autocorrelation function |C;(t)| and
the corresponding absorption spectrum P;( £) that are obtained in the stan-
dard collinear model for the photodissociation of CO; [22,23]. The weak
recurrences in C;(t) give rise to diffuse vibrational structure in P;(E) for
reasons explained in lecture 3. The first few recurrences occur at the pe-
riods of the classical periodic orbits shown in Figure 3 [22,23], and indeed
the dynamics can be linearised semiclassically around each of these periodic
orbits to give the corresponding contribution to |C;(¢)| as shown in Figure
4 [24]. The way to “assign” diffuse vibrational structure is therefore simply
to identify the relevant classical periodic orbits:
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Figure 1: The modulus of the autocorrelation function |C;(t)| versus ¢ for
the standard collinear model for the photodissociation of CO3 [22,23]. Note
that the recurrences beyond ¢ = 1000 au have been multiplied by 10, and
are therefore really far weaker than shown.
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Figure 2: The photodissociation spectrum P;( £) versus F for the standard
collinear model for the photodissociation of CO3 [22,23]. This is an exam-
ple of the diffuse vibrational structure discussed in lecture 3, which arises
because of the weak recurrences in |C;(t)| in Figure 1.
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Figure 3: Classical periodic orbits on the excited (LEPS) potential energy
surface in the standard collinear model for the photodissociation of CO4
[22,23]. The periods of these orbits coincide almost exactly with the times
of the first few recurrences in |C;(t)| in Figure 1.
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Figure 4: Semiclassical contributions from each of the periodic orbits in
Figure 3 to the modulus of the correlation function |C;(#)| in Figure 1 [24].
Note that the curves have again been multiplied by 10 beyond ¢ = 1000 au
for clarity. The semiclassical contribution to the first recurrence at ¢t = 1522
au clearly agrees extremely well with the exact quantum mechanical result.
The semiclassical contribution to the second recurrence at t = 2444 au agrees
equally well when it is multiplied by a factor of 2 to account for the fact
that there are two equivalent classical orbits with this period which return
to the Franck-Condon region in phase, and similarly (although in this case
the situation is complicated by interference) for the following two periodic
orbits [24].
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Resonances in the photodetachment of FH,

This example concerns the long-standing debate about the importance of
quantum mechanical resonances in chemical reactions [13]. Figure 5 shows
a Franck-Condon simulation of the photoelectron spectrum FP;(£) of the
para FH3 anion at the 1 meV energy resolution that one might expect
to be attainable in an anion threshold photodetachment experiment [25].
The anion photodetaches to the transition state region of the neutral F+Hy
reaction and the photoelectron spectrum therefore probes the dynamics of
the neutral reaction in this transition state region [26].

The spectrum consists of a sequence of three broad peaks with several rather
narrower peaks superimposed. Such a spectrum can be assigned by noting
that P;(F) in eq. (4.1) can be re-written as

Pi(E) = (xi | xa(E)) (4.56)
where
a(E)) = =R [t EU 1) (457

is an energy-dependent scattering wavefunction that can be computed from
the evolving wavepacket: the assignment can therefore be made by exam-
ining the nodal structure of |y;(F)) at each peak energy F. (However, it is
found in practice that it is easier to look at the nodal structure of

1 o :
X(E)) = =R [ 2 HE i 0) e (458)

which allows one to assign narrow peaks rather more easily [25].)

For example, Figure 6 shows the wavefunctions |x7(E)) at the energies of
the first three peaks in Figure 5. The first and third peaks are clearly due to
quasi-bound resonance states localised in the van der Waals well regions of
the F+Hy reactant and H4+HF product valleys shown in Figure 7, whereas
the second broader peak is due to a delocalised direct scattering state [25].
The narrow peaks in Figure 5 can thus be attributed to reactive scatter-
ing resonances, which is interesting because these resonances have yet to be
detected experimentally [27]. Figure 5 suggests that a threshold photode-
tachment experiment on the FH; anion will resolve them very clearly and
unambiguously:

47



16

141

121

101

P(E)/eV™

0.2 0.3 0.4 0.5 0.6
E/eV

Figure 5: Franck-Condon simulation of the photoelectron spectrum P;(E)
of para FH; at 1 meV (full width at half maximum) energy resolution [25].
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Figure 6: (a) A quasi-bound resonance state in the reactant valley of the
F+H; reaction at £ = 0.268 eV, (b) a direct scattering state at £ = 0.280
eV and (c) a quasi-bound resonance state in the product valley at F© = 0.294
eV [25]. (The coordinates of the plots are the mass-scaled Jacobi coordinates
R and r of the F4+H; reactant arrangement.)
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Figure 7: (a) Collinear contour plot of the Stark-Werner F+H; potential
energy surface [28], with expansions of the reactant and product van der
Waals well regions in panels (b) and (c). Solid contours correpond to positive
energies and dashed contours to negative energies relative to the bottom of
the asymptotic F4+Hy reactant valley.
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Problems

. (a) Derive eq. (1.11) from eqgs. (1.5) to (1.10). (b) Verify that the
plane polarised electromagnetic wave defined in eqs. (1.24) and (1.25)

does indeed satisfy Maxwell’s equations provided kFg = powHgy and
k‘HO = EowEo.

. Show how the Fourier transform equations
Fe)= o= [ ety
2T J—co

and -
(1) = / e~ P(w) dw

can be combined to obtain both the Fourier representation of the delta
function in eq. (3.18) and (hence) the sinc function representation used
in eq. (1.47).

. Use the expression for the absorption cross section given in eqs. (2.1)
and (2.2) to derive the sum rule

[E b= T e .

w hege

(which shows that this particular moment of the absorption cross sec-
tion is independent of both the electronics and the dynamics of the
final state).

. The usual version of the Lippmann-Schwinger equation is
() = [65(E)) + lim G (Bl (E))

where
(E— Hyf)los(E)) = 10)
and

GHE)=(E+ie— Hy)™".

Show that this equation can be rearranged into the equivalent forms

[ (E)) = lim iGT(E)elos(E))
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and
[WF(E)) = [65(E)) + lim GH(E)Vilés(E))
where
GH(E)=(E+ie—H)™'
with

H:Hf—I—Vf,

which are more useful for computation because they do not have
the unknown scattering wavefunction |¢?(E )) on the right-hand side.
[The first of these forms is used extensively by Miller and co-workers
and the second is the outgoing-wave version of eq. (3.41).]

. Show that the usual angular momentum commutation relations
JAT =+4ih]
imply the equations

[JZ,JZ] =0 [, J4] = +hiy

2 0e| =0 [y, d) =20
where
Jy = J, 21y,
whereas the anomalous angular momentum commutation relations
JAT =—ih]

imply the same equations with J4 redefined as
Jr = Jr FiJy
as in eq. (4.14).

. Use eqs. (4.22) and (4.23) to derive Colbert and Miller’s simplified
expression for the grid representation of the radial kinetic energy op-
erator in a particle-in-a-box DVR.

. Estimate the minimum width of the absorbing region AR.ps that can
be used to simulate (a) the photodissociation spectrum of CO; and
(b) the photoelectron spectrum of FH; , assuming a minimum relevant
photofragment translational energy of E; = 10 meV in each case. [NB:
For completeness, you should consider both possible photofragment
arrangements F+Hy and H4HF in part (b).]
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8. Equation 11.4.24 of Abramowitz and Stegun for the (inverse) Fourier
transform of the Bessel function J, (%) is

00 2(—=2)"Th(w .
/ e—ithn(t) dt = { l(1—_w2u)1/2—l ifw? <1
0 if w? > 1.

— 00

Use this equation to derive the expression for the Chebyshev expansion
coefficient a,(t) of e=*“* given in eq. (4.39) of the lecture notes.

56



