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1 Elastic Scattering

1.1 Experimental observables

Consider a collision between two structureless (*S) atoms A and B:

®)

dS

The experimental observables are the differential cross section (DCS)

do(E) _ scattered flux per unit solid angle

aa incident flux per unit area  ’

and the integral cross section (ICS)

E ™ do(E
o(E) = d(;(Q)dQ:mr/o Od(Q)sinOdO,
where PR 22
p IR
2 7
and
. mamp
'u_mA—i—mB'



In eq. (2), we have exploited the cylindrical symmetry of the collision to
eliminate the integral over the azimuthal angle ¢ (where df) = sindf d¢).
The fact that k2 = (k') in eq. (3) arises because the scattering is elastic,
so the initial and final relative kinetic energies are the same. Note also that
both o(FE) and do(E)/dS) have the dimensions of area.

1.2 The flux density

In order to calculate the DCS in eq. (1) quantum mechanically, we must first
work out how to calculate the fluxes (number of particles per unit time) in
the numerator and denominator. This can be done! by considering the rate
of change of the probability of finding the A+B system in a finite volume V:

dPy (t) d/ ,
- %[
dt g ), [P dr
- /\Il*\if—i-\if*\lldr
174
— 9Re / U dr, (5)
Vv

where r is the vector between the atoms A and B. Since the wavefunction
U(r,t) satisfies the time-dependent Schrédinger equation
h2

i = HU = (_ﬂ

V4V, (6)
and the potential V' (r) is real, this simplifies to

dPy(t) 1 . R*_,
Y2 = 2Re lﬁ/vqj (—QMV +V)Tdr

— Re l% /V e dr]. (7)

If we now integrate by parts (using Green’s theorem), we can reduce the
volume integral to a surface integral over the surface S of V:

dPy(t) zh( )
_ Y ovy.ds— [ vor-ve
v Relu /S VU - dS /V VU* - VU dr

'W. H. Miller, Charles Coulson Summer School Lecture Notes, 1996.
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= —Re/\I!*B‘I!-dS
s

= —/Sj(r,t)-dS, 8)

where p = —ihV is the momentum operator and j(r,t) is the flur density
i) = Re (e, 2wt 0
7

(The minus sign in eq. (8) arises because if there is a net outward flux through
S, so that [gj(r,t) - dS > 0, then the probability of finding the system in V/
will decrease with increasing ¢.)

Note that:

(a) The flux density j(r,?) in eq. (9) has the dimensions of a probability
density, p(r,t) = [¥(r,t)|* = U(r, ¢)*U(r, ), times a velocity, v = p/p.
However, in quantum mechanics, the flux density is not simply the
probability density times the velocity as it is in classical mechanics.

(b) If W(r,t) has the trivial time-dependence ¥(r,t) = U(r)e *#*/" then
both the probability density and the flux density are independent of ¢;
the steady state flur is j(r) = Re [¥(r)*(p/p)¥(r)].

(c) If ¥(r) is real then (since p = —iiV) j(r) = 0. Hence scattering theory
requires complex wavefunctions.

FEzxercises:

1.1 If ¥(r) = ™% and dS = 2 dxdy = 2 dS, where Z is a unit vector in the
z direction, show that

hk
j(r)-dS = —dS.
1
e+ikr
1.2 If ¥(r) = f(0) and dS = tr*sinfdfd¢ = tr2dQ), where T is a
unit vector in the radial direction, show that

i(r)-ds "X h—j\fwn?dn.




1.3 The scattering amplitude
Combining the results of these two exercises, it follows that if we can find a
solution of the time-independent Schrodinger equation

[_;‘_“W + V(r)]‘ll(r) = EU(r), (10)

subject to the boundary condition

) +ikr
) et (o), (11)

then we can calculate the DCS in eq. (1) as

do(F) (scattered flux into d€2)/dS2
dQ (incident flux through dS)/dS

(Tk /1) | f(0) * dS2/d2
(hk/p) dS/dS

= |f(O)P, (12)
and the ICS in eq. (2) as

o(E) = 21 /0 |£(6)[2 sin 0 df. (13)

The function f(f) in eq. (11) is called the scattering amplitude; it is inde-
pendent of the azimuthal angle ¢ because of the cylindrical symmetry of the
problem, and it has the dimensions of a length.

1.4 Partial wave phase shifts

The Hamiltonian

H= —2—V2 +V(r)=———-—=r+ +V(r) (14)

in eq. (10) commutes with [? and I,, so both [ and m, are conserved (constants
of the motion). Furthermore, since the boundary condition in eq. (11) has
cylindrical symmetry, we only have to consider solutions of the Schrédinger
equation with m; = 0.



Ur)+1(1+1)/7 |

k2L

0
r
These solutions have the general form
1
Uy(r) = ;wl(r)Pl(cos 0), (15)
where 1;(r) satisfies the radial Schrédinger equation
d? s LI+1)
(o2 + 8 = =5 = U@)](r) = 0, (16)

with k2 = 2uFE/h* and U(r) = 2uV (r)/R>.

The behaviour of the radial wavefunction (r) is sketched above. 1/;(r) must
be regular at the origin because of the factor of 1/r in eq. (15),

Y(r —0) ~0, (17)

and (assuming that U(r) tends to zero faster than 1/r as r — oo, which will
certainly be true for atom-atom collisions) ¥;(r) must tend asymptotically
to a linear combination of sin(kr) and cos(kr) (or equivalently of e™**" and
e *7). The coefficients in this linear combination are related by the bound-
ary condition at the origin in eq. (17), which fixes one of the two independent



parameters that are needed to specify the solution of the second-order differ-
ential equation in eq. (16). It is convenient to choose the remaining parameter
to be a phase shift, m;, and to write the asymptotic (r — oo) form of ;(r) as

Y (r — 00) ~ sin(kr — Iw /2 + ). (18)

The reason for this choice is as follows. If the potential V(r) were zero,
eq. (16) would be

w-}-kQ— , ]dJl(T):O (19)

This equation has two linearly-independent solutions, the Riccati-Bessel func-
tions? 7;(kr) and g;(kr), but only one of these [7;(kr)] is regular at the origin.
Hence, for V(r) = 0, ¢;(r) is proportional to j;(kr), and the asymptotic form
of this function as r — oo is jj(kr) ~ sin(kr — (7 /2). The phase shift 7; in
eq. (18) therefore reflects the effect of the potential on the asymptotic form
of ¢(r), whereas the phase shift of —l7/2 comes from the centrifugal barrier.
Attractive potentials lead to positive phase shifts and repulsive potentials to
negative phase shifts, as shown in exercise 1.6 below.

[ d? l(l+1)

FEzxercises:

1.3 Assuming that the potential V' (r) is less singular than 1/72 as r — 0,
show that eqs. (16) and (17) imply 1;(r — 0) ~ Cr'*! for some constant
C.

1.4 Show that the boundary condition in eq. (18) can be written equiva-
lently as

Ui(r = o0) ~ C [efi(krflw/Z) _ e+i(kr7l1r/2)8l] ’

where C; = e " and S; = %™
1.5 Show that the s-wave (I = 0) phase shift for the square-well potential

-V, 0<r<a,
V(r):{O " a<r

2M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New
York, 1965), Chapter 10.




is given by
k
no(k) = arctan (E tan k'a) - ka,
where (k')? = 2u[E + Vp]/R%.

1.6 Consider the scattering by a potential AV (r) that depends on a multi-
plicative strength parameter 0 < \ < 1; i.e.,

d? , ll+1) N
[+ K = = = A4 (r) =0,
subject to
Y (r = 0) ~ 0,
and

wl)‘(r — 00) ~sin(kr — In/2 + nl)‘)

Differentiate the first of these equations with respect to A, pre-multiply
by 9;*(r), and integrate over r to show that

Py o opd]"
oroi or o0\

?

R
| vivw dr = [wﬁ

r=0

and hence, using the two boundary conditions, deduce that

=1 O N W
g :_Eo(/o wlUd)ldr)d)\.

[It follows from this result (and the reality of +;*(r)) that a purely
attractive potential V'(r) < 0 will give rise to a positive phase shift and
a purely repulsive potential to a negative phase shift. Furthermore,
it can be seen that the phase shift 7, goes to zero in the limit as the
scattering energy F (and hence k) goes to infinity.]

1.5 Partial wave expansion of et*?

In order to make a connection between eq. (11) and eq. (15), and hence relate
the scattering amplitude f(#) to the partial wave phase shifts 7;, we first need
to determine the partial wave expansion of the incident plane wave et*=.



This can be done® by expanding e™*7 as in eq. (15),
e-l—ikz = e—i—ik’rcosﬁ Z¢l Pl COS@ (20)

making the substitution z = cos#, and using the orthogonality relation of
the Legendre polynomials

1 2
P(x)Py(x) dx = Oy 21
[, P@)Pe (@) do = 55 (21)
to extract the expansion coefficient ¢;(r) as
20+ 1 -
oi(r) = T+ Py(z) re*™ da. (22)
—1

All we need in eq. (11) is the asymptotic (r — oo) form of ¢;(r), which
can be obtained by integrating eq. (22) by parts and using the fact that
Pi(£1) = (£1):

_ 2l +1 +ikrx 1 ! ! +ikrz
di(r) = ik {[Pl(x)e ],1 - /_1Pl(x)e dx}
o 20+1 tikr 4\l —ikr
= o [e (—1)%e ] +O0(1/r)
— QZ;: 12 sin(kr — I /2) + O(1/7). (23)
Hence ~ 241,
etikz 7250 > k—; it sin(kr — I /2) P,(cos 6). (24)
1=0

Aside: This argument only gives the r — oo limit of et%*?. However, it is easy
to generalize the result to all 7. Since the plane wave e™**Z is a solution of the
Schrodinger equation in eq. (10) with the potential V(r) set equal to zero,
¢(r) must be a solution of eq. (19). Since this solution must also be regular
at the origin, this implies that ¢,(r) = C7,(kr), where j;(kr) is the regular
Riccati-Bessel function and C' is a constant of proportionality. Finally, since

3M. S. Child, Molecular Collision Theory (Dover, New York, 1996), Chapter 3.



the asymptotic (r — oo) form of j;(kr) is j(kr) ~ sin(kr — 7 /2), eq. (23)
fixes the constant C as (21 + 1)i'/k. Hence eq. (24) generalizes to

etk — $°(21 + 1)it,(kr) Py(cos ), (25)
=0

where j;(kr) = 51(kr)/kr.

1.6 Integral and differential cross sections

Inserting in eq. (24) into eq. (11), and re-expanding sin(kr — [7/2) in terms
of exponentials, we obtain

e+ikr 00
U(r) "X Z (cos B)
r =0
—ikr 21 il
_ e s + ) P(cos0), (26)
" =0
whereas expanding ¥(r) as
\I/(I‘) = ZAl\Ill(I‘) (27)
1=0
and using egs. (15) and (18) gives
+ikr 00 A —ilmw [2+in,
U(r) "X c . © Py(cos )
TS 21
e—z’kr 00 Ale+il7r/2—im
— . P, 0). 28
" g 5 i(cos 0) (28)

Equating the coefficients of =7 /r in eqs. (26) and (28) gives

2l 1 +ilm /2+in;
Al = ( + )e s (29)
k
and substituting this back into eq. (28) and equating the coefficients of e**" /r

gives

1

= 57 2_(2L+ 1) Py(cos ) (e?m —1). (30)

=0
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This is a major result, as it relates the scattering amplitude f(6), and hence
the differential and integral cross sections defined in Section 1.1, directly to

the partial wave phase shifts 7. The DCS is given by eq. (12) as |f(6)|?, and
the ICS can be obtained from eq. (13):
o(E) = 21 / £ (6)[2sin 0 d
- 2”2 z lz (2 +1)(20 +1) (e 2™ — 1) (T2 — 1)
1=0 I'=0
X / P,(cos ) Py(cos 6) sin 6 df
0
ar &
= > (21 + 1) sin®n, (31)

l

Il
)

where we have used the orthogonality relation of the Legendre polynomials
[eq. (21)] to obtain the bottom line.

FEzxercises:

1.7 Use the identity P;(1) =1 to derive the optical theorem

o() = - f(0).

1.8 In the hard-sphere model of a collision between two atoms, the poten-
tial V(r) is infinite for r < d and zero for r > d, where d is the collision
diameter. The classical cross section for this model is o4 (FE) = 7d?,
independent of the collision energy E. Show that the quantum me-
chanical cross section is exactly 4 times larger than this in the limit as
E — 0, where only the [ = 0 partial wave contributes to eq. (31). Why
don’t any other partial waves contribute in this limit?

1.7 The scattering matrix

Equations (30) and (31) can be written equivalently in terms of the scattering
matriz S; = S;(E) introduced in exercise 1.4,

Sy = et?m, (32)

11



as

1 o
=5 g (20 + 1)P(cos 0)(S; — 1) (33)
and -
o(E) = % Y@ +1)|S -1 (34)
=0

respectively. Furthermore, it follows from exercise 1.4 that S; can be com-
puted directly (without first calculating n;) by solving the radial Schrédinger
equation in eq. (16) subject to the boundary condition in eq. (17) and

wl(r — OO) ~ ,Ufl/Zefi(k'rflw/Z) . U71/2€+i(krfl7r/2)sl’ (35)

where v = fik/u is the asymptotic speed of the collision. This radial wave-
function differs from that in eq. (18) by a constant factor of —2iv~1/2e*m,
but this factor is immaterial because the problem is homogeneous (i.e., if
(1) is a solution of egs. (16) and (17) then so is Ay (r) for any constant
A). The speed factors of v~'/2 in eq. (35) flux-normalize the incoming and
outgoing waves and have been included for later convenience.

The advantage of eqs. (33) and (34) over the corresponding phase shift formu-
lae is that they generalize in a straightforward way to multichannel (inelas-
tic and reactive) problems, where S;(E) becomes a unitary matrix S’ (FE).
For example, the scattering amplitude for a state-to-state transition in an
atom-diatom collision is given (in the helicity representation where £ is the
projection of j along k and k' the projection of j' along k') by

o0

1
Fogne i (6) = 52— 3 (20 + 1) di (6) (S0 = OuroBjejien)  (36)

vj J=0

and the integral cross section by

2
Jv’j’k’(—vjk(E k‘2 Z 2J+ 1 ; (37)

vj J=0

otk ik — Ovw0j1iOkrk

where J is the conserved total angular momentum quantum number and
df,.(9) is a reduced rotation matrix element. Since dfy(f) = Pj(cosf),
eq. (36) is a straightforward generalization of eq. (33), and eq. (37) is the
corresponding generalization of eq. (34). We shall return to discuss how to
compute the scattering matrix S’(F) in Lecture 3.

12



2 Scattering “Theory”

2.1 S-wave potential scattering

In this Lecture we shall derive some of the central results of scattering theory
in the simple context of s-wave (I = 0) potential scattering. These results all
generalize in a straightforward way to higher partial waves (I > 0) by replac-
ing sin kr and cos kr with the appropriate Riccati-Bessel functions [j;(kr)
and g;(kr)]. They also generalize to multichannel (inelastic and reactive)
scattering problems.

The radial Schrodinger equation for s-wave potential scattering is

(E—-H)y =0, (1)
where
s Vv 2
H=Hy+V=-2%
HV == V(), ©)
and we would like to solve this equation subject to eq. (1.17)
¥(r—0)~0, (3)
and eq. (1.35)
1/1(7" — OO) ~ U—1/2€—z’kr _ U_1/26+“WS(E), (4)

where k% = 2uE /h* and v = hk/p.

2.2 Free particle eigenstates

The eigenstates of the radial kinetic energy operator Hy = p?/2u that satisfy
the boundary condition in eq. (3) are

(rlp) = (2/)"/? sin(pr /), (5)

where the normalization constant has been chosen such that

iy = [ dprlp) pir')
- % /OOO dp sin(pr/h) sin(pr'/h)

= %/Oood/ﬁ [cosm(r—r') —cos&(?‘-i-?“')]
= 6(7’—7“')—(5(7“—{—7’/). (6)

13



Since r and r' are radial variables, ' cannot equal —r, and the second of the
delta functions in eq. (6) can therefore be dropped to leave

rlr) = [ dprlp) (olr") = 8 =) (r,r’ > 0) (7)

A slight generalization of eq. (6) that we shall need below is that the coordi-
nate matrix elements of any operator of the form f(Hy) are given by

(rl f(Ho) 1) = [ dp (rlp) £ (0*/20) oI
= % /000 dr f(R*K?/2u) [cos k(r —r'") —cosk(r + r')]
= % /_o:o dr f(h*K?/2u) [cos k(r —r') — cosk(r + r')],
(8)

where we have used the fact that the integrand is an even function of x to
obtain the bottom line. Equation (6) is a special case of eq. (8) in which the
operator f(Hp) =1 (the identity operator).

FEzxercises:

2.1 Use the definition of (r[p) in eq. (5) to show that
(plp’) = /0 dr (plr) {rlp’) =d(p—p);  (p,p' > 0).

2.2 Given that Hy |p) = (p?/2u) |p) and that 1 = [;°dp |p) (p|, show that
the spectral representation

F(Ho) = [ dplp) 72*/21) G

is valid for any function f(z) that can be expanded as a power series
in . (When f(x) is a rational function that can become singular at
certain values of z we have to proceed a bit more carefully, as discussed
in the following section.)

14



2.3 Integral equation formulation

The radial Schrodinger equation in eq. (1) can be re-written as an inhomo-
geneous equation

(E — Ho)p = Vi), 9)

and solved formally to give
Y =¢+(E~Hy) 'V, (10)
where ¢ satisfies the homogeneous equation
(E — Hy)p = 0. (11)

In the coordinate representation, eq. (10) becomes an integral equation for
the radial wavefunction v (r),

U(r) = 0 + [ dr’ Golr, )V ()0, (12

where
Go(r,r") = (r| (E — Hp)™' |r'). (13)

However, in order to complete this formulation, we still have to specify (i) how
to choose the homogeneous solution ¢(r) and (ii) how to compute the Green’s
function matrix element Go(r,7'). As we shall see, the answers to both of
these questions are intimately associated with the boundary conditions on

¥(r) in egs. (3) and (4).

Let us begin by considering the evaluation of Gy(r,r’). Since the operator
(E — Hy) ! is singular for positive real energies, we should be wary about
using eq. (8). Nevertheless, if we go ahead and apply this equation we obtain

Golr.1") = /00 dﬂcosm(r—r)—cosm(r—%r)

1
2 E — %2 /2

po [ cosk(r—r')—cosk(r—+r')
—2/ dk
Th® J- k? — k2

Il

c(|r—7'|) —c(r +1'), (14)

15



where

M o0 COS KT
@0 = o g
—I—mm + e—mm
= dk 15
27 h2/ R -k (15)

with z > 0.

The integral in eq. (15) does not converge for real energies E = h%k?/2u,
because the integrand diverges when x = £k. This is precisely the difficulty
we were anticipating. The standard way to avoid the problem is to replace
E with E =+ ie, where € is a small but finite positive constant. In particular,
if we choose the replacement £ — FE + i¢, the poles of the integrand will be
shifted off the real integration axis and into the first and third quadrants of
the complex x-plane:

Imx
A

I+

For finite €, the integral in eq. (15) can therefore be evaluated using the
residue theorem, with the closed semi-circular contour I, (/) being used to
reduce the integral involving e*® (e~%2) to +2mi (—27%) times the residue

16



of the pole at k = +k (—k):

U ) e+ikz 'e-l-ikz 7’# ik
_ 2 _omiS ] = M ik 1
@) = 3l k) (2k)] Wk (16)

Combining this result with eq. (14), recalling that v = ik/u, and taking the
limit as € — 0 after having evaluated the integral, we obtain

Go(r,r") = lim{r|(E +ie— H)™ " |r')

e—0

2 ol
— __e+zlc|'r 7‘\+

hp hv
_ "t [e+ik(T>—T<) _ e+ik(T>+T<)]

T, ,
e—l—zk(r—}-r )

hv

2 .
= —3 sin(kr.) eT*"> (17)

where r. (r5) is the lesser (greater) of r and 7’. Hence the replacement
E — E + ie leads to an outgoing-wave (e7*7>) Green’s function Go(r,r").

The final stage of the argument is to substitute eq. (17) back into eq. (12) and
use the boundary conditions in egs. (3) and (4) to determine the homogeneous
solution ¢(r). As r — 0 we obtain

B(r — 0) ~ () — h—QU sin kr /0 % & eV () (), (18)

which in view of eq. (3) implies that ¢(r — 0) ~ 0. Hence ¢(r) = Asinkr,
where the constant A can be determined by examining the asymptotic form
of ¥(r) as r — oo:

p(r = 00) ~ ;(e”k’" - e_“”") - %e”’” /Ooo dr' sin(kr")V (r)y(r'). (19)

7

Comparing the coefficient of e~ in this equation with that in eq. (4) gives
A = —2iv~"/2, and therefore

o(r) = —2iv~ 2 sin kr- (20)

Finally, substituting this value of A back into eq. (19) and comparing the
coefficient of e™™" with that in eq. (4), we obtain an integral representation

17



for the scattering matrix:

S(E) = 1+ [T ars(V )

1=+ [T ety v, (21)

where we have used the fact that ¢(r) is purely imaginary (see eq. (20)) in
the second line.

FEzxercises:

2.3 Show that the replacement £ — E —ie in eq. (15) leads to an incoming-
wave Green’s function of the form

9 .
Go(r,r") = . sin(kr.)e™"*>

i.e., to the complex conjugate of eq. (17).

2.4 Show further that this incoming-wave Green’s function is inconsistent
with the boundary conditions on (r) in eqgs. (3) and (4); i.e., that
if the incoming-wave Green’s function is used then no choice of the
homogeneous solution ¢(r) can be made so as to satisfy both boundary
conditions.

2.4 Time-independent scattering theory

2.4.1 Green’s operators

The outgoing-wave Green’s function Gy(r,7') in eq. (17) can be regarded as
a coordinate matrix element of a free-particle Green’s operator

Go(E) = (E +ie — Hp) ™, (22)

where the limit as ¢ — 0 is implied in the sense of eq. (17). Similarly, we
can define an analogous Green’s operator for the full potential scattering
problem:

G(E) = (E +ie — H) .. (23)

18



These two Green’s operators are clearly related by the fact that H = Hy+V/,
which implies that

Go(E)Y'=FE+ic—Hy=(E+ice—H)+V =G[E) '+ V. (24)
Pre-multiplying eq. (24) by G(F) and post-multiplying by Go(F) gives
G(E) = Go(E) + G(E)V Gy (E), (25)
whereas pre-multiplying by Go(FE) and post-multiplying by G(FE) gives
G(E) = Go(E) + Go(E)VG(E). (26)

Equation (25) (or equivalently eq. (26)) is known as the Lippmann-Schwinger
equation for G(E).

2.4.2 The Born series
The integral equation in eq. (12) can be written in terms of Go(E) as

) = [6) + Go(E)V [¥), (27)
and the integral expression for S(E) in eq. (21) is
S(B)=1—1 (6|V ). (28)
Equation (27) can be solved formally to give
W) =[1-Go(B)V] " |#), (29)

and substituting this into eq. (28) gives

S(B) =1~ 3 (8| V[1- Go(E)V]™ |9} (30)

If we now expand the inverse in eq. (29) as a binomial series, (1 — z)™! =

1+ + 2%+ ..., we obtain
) = |¢) + Go(E)V |¢) + Go(E)VGo(E)V [6) + ..., (31)

19



and the corresponding expansion in eq. (30) gives

(P|VGo(E)V [¢) +.... (32)

S(B) =11 (6 V )~

Equation (31) is known as the Born series for the scattering wavefunction
|1}, and eq. (32) is the Born series for the scattering matrix. The terms in
both series are straightforward to calculate in the coordinate representation,
where the third term in eq. (32) (for example) becomes

(G| VGo(E)V |6) = /0 = dr /0 T A $(r)V (1) Gol(r, PV ()e(),  (33)

with Gy(r,7") given in eq. (17) and ¢(r) in eq. (20).

However, since the binomial expansion (1 — z)™* = 1+ x + 2%+ ... only
converges for |z| < 1, the Born series does not always converge. It is most
likely to converge if the potential V(r) is “weak” and the scattering energy
E is “large”, in which case the Born approzimation

S(B) =1~ 1 (8]V[9) (34

is likely to dominate. This is invariably the case in neutron scattering (where
V' is weak), and often the case in high-energy electron scattering (where F
is large). However, the Born series nearly always diverges for thermal-energy
atomic and molecular collisions.

2.4.3 The transition operator

A better way to proceed for molecular collision problems is therefore to aban-
don the Born series and concentrate instead on the exact transition operator

T(E) =V[1- Go(E)V]™" (35)

that appears in eq. (30), in terms of which the S matrix can be calculated as

S(B) =1~ + (9| T(E)|9). (36)
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A more convenient expression for T'(F) can be obtained by using eq. (24) to
eliminate Go(F) from eq. (35) in favour of the full scattering Green’s operator
G(E):
T(E) = V[1-Gy(E)V]"
V[1—=Go(E)V] '[1 = Go(E)V + Go(E)V]
= V4V[1-Go(E)V] 'Go(E)V
= V+VI[Gy(E)*=V]'V
= V+VG(E)V. (37)

This is an expression for T'(E) in terms of G(E), but it can easily be inverted
to obtain an expression for G(F) in terms of T'(E). If we post-multiply both
sides of eq. (37) by Go(F) and use the Lippmann-Schwinger equation in
eq. (25) we obtain

T(E)Go(E) = VIGo(E) + G(E)VGo(E)] = VG(E), (38)
and using this to replace VG(E) with T(E)G(F) in eq. (26) gives
G(E) = Go(E) + Go(E)T(E)Go(E). (39)

This equation will be used as the starting point for deriving a time-dependent
wavepacket formula for S(E) in the following section.

2.5 Time-dependent scattering theory

The above equations can be taken into the time domain by noting that
o Hi(Btie—H)t/n 1%
[i( ]

Etic_ H)Jh =ih(E +ie— H)™',  (40)

/ * gt etiE+ie—t/n _
0 0

and therefore
GE)=(E+ie—H) '= —% /0 dt et EFieH)t/n (41)

where the +ie now plays the role of a convergence factor for the integral over
(positive) t.

As an application of eq. (41), consider a matrix element of G(E) — Gy(FE)
between two localized (square integrable) wavepackets |1;) and |¢;) that lie
beyond the range of the interaction potential:
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V(r)

(Wil G(B) = Go(B) [9) = — [~ dte™ M) = Colt)],  (42)
where
C(t) = (tg] eI ) = (s (0)[9i(1)) (43)
and (similarly)
Colt) = (| e M ). (44)
According to eq. (39), the matrix element on the left-hand side of eq. (42)
can be written equivalently as

<1/Jf| G(E) - GO(E) |¢z> = <¢f| GO(E)T(E)GO(E) |¢z>

= / dr/ dr/ dr"/ dr"

(1) Go(r, ) (| T(E) ") Go(r", 7™ )i (r™),

X

(45)
where Gy(r,7") is given by eqs. (17) and (20) as

Golr, 1) = =3 6(r )6 (7). (16)
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with
o(r) = ¢~ (r) — o7 (1), (47)

and
o (r) = v 1/2pEikr (48)

Now from the expression for T'(E) in eq. (37), we know that the matrix
element (r'|T(E) |r") will only be non-zero if both 7’ and r" lie within the
range of the potential, whereas ¢ ¢(r) and 1;(r") in eq. (45) are only non-zero
(by construction) if r and 7 lie beyond the potential. Hence r is the greater
of r and 7/, and " is the greater of 7" and ", and the integrand in eq. (45)
becomes

gy ()6 (O) | T(B) 1) 6"} () i),

where we have used the fact that ¢(r') is purely imaginary and ¢ (") is
the complex conjugate of ¢*(r"). Integrating over all four radial variables
therefore gives

(11 G(E) — Go(B) ) = =5 (7167 (61 T(E) |6) (971w}, (49)

which when combined with egs. (36) and (42) gives the scattering matrix
S(F) as

1
(rlo*) (¢ [

where the correlation functions C(t) and Cy(t) are defined in eqs. (43) and (44).

S(E)=1— ; /0 dteT PR [O() — Cot)]  (50)

Equation (50) shows that the scattering matrix S(E) can be calculated at all
energies by propagating the initial wavepacket [i;) forwards in time under
the influence of the full Hamiltonian H (to give C(t)) and the free-particle
Hamiltonian Hy (to give Cy(t)). The multichannel generalization of this
equation? provides one of the most promising modern methods for calculating
state-to-state reactive scattering matrix elements, as we shall discuss further
in Lecture 4.

4See: W. H. Miller, Advan. Chem. Phys. 25 (1974) 69; Section IIL.A
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FEzxercises:

2.5

2.6

2.7

Use the Lorentzian representation of the delta function,

1.. €
=i
to obtain an expression for the microcanonical density operator 6(F —
H) in terms of the imaginary part of the outgoing-wave Green’s oper-
ator G(E) = (E +ie— H) ..

Find a time-dependent expression analogous to that in eq. (41) for the
incoming-wave Green’s operator G(F) = (E — ie — H)™ 1.

Show that if the final wavepacket |¢7) is localized at larger r than the
initial wavepacket [¢;) then eq. (50) can be simplified to

_ ot 1 = gt eTiBn
SE) = t6T0) ~ rEn @ o e C®),

whereas if |¢f) is localized at smaller 7 than |¢;) then

:<¢f|¢_>_ 1 = dt eTiBD
SE) = Gnle® ~ e T o ETTC®):
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3 Inelastic Scattering

3.1 Close-coupled equations

Now consider a collision between a structureless (!S) atom A and a struc-
tureless ('3) diatomic molecule BC:

r Y
o
/ R

The Hamiltonian in the centre-of-mass frame is

2
H = —%vi - h(r) + V(R ), 1)
where
hr) = =292 1 o) )
r) = TG v(r).

In eq. (1), g = mampc/mapc is the reduced mass of the collision, and
V(R,r,7) is the interaction potential between the atom and the diatomic
molecule. In eq. (2), p, = mpmc/mpc is the diatomic reduced mass and
v(r) is the diatomic potential. Combining both equations gives

B 1 62 2 B’ 1 02 72

H=-2>-2p Lo
21 R OR? + 2uR?  2u,r a2 + 24,12

+ V(R,r,7), (3)

where {2 is the squared orbital angular momentum operator associated with
the rotation of the vector R, 52 is the squared rotational angular momen-
tum operator associated with the rotation of the vector r, and V(R,r,7y) =
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V(R,r,7)+ v(r) is the full triatomic interaction potential. Two preliminary
observations will be useful before we consider how to solve HU = E.

The first is that, since the Hamiltonian H in eq. (3) commutes with J? =

(I+7)? and J, = I, + J,, the total angular momentum quantum number J

and the projection quantum number M are both conserved. The eigenstates

of J2 and J, can be formed by coupling Yim, (R) = Yim, (0, ®) with Vi, () =
Yjm, (0, ¢) to obtain

y R,r Z Yzml ij( )<jmj7lml|JM>7 (4)

mjimy

where (jm;, lm;|JM) is a vector-coupling coefficient® and the sums over m; €
[—J, 7] and my € [—1,1] are restricted by the requirement that M = m; + my.
The functions Y;™ (R,t) in eq. (4) are simultaneous eigenfunctions of the
commuting operators J2, J,, I? and j2,

N

FYMRE) = RIJ+DYMR, 1)
LYMR, ) hM YIM (R, r)
PYMR,E) = R+ 1DYMR,T)
PYMRE) = G+ DYMRE), (5)
and they are normalized such that
/dR/dI‘ yJ,’l,M’( ) = 5JJ’5MM’5jj’5ll’~ (6)

Equations (5) are especially convenient because both [2 and 72 appear in
eq. (3).

The second observation is that at long range, as R — oo, the interaction
potential V' (R, r,v) between the atom and the diatomic molecule tends to
zero. Hence eq. (1) separates at large R into

2
R— h

H "% ——V2+h() (7)

5R. N. Zare, Angular Momentum (Wiley, New York, 1988).
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where h(r) is the diatomic Hamiltonian. Assuming that the collision energy
is not too high, we need only concern ourselves with the bound states of this
Hamiltonian, which are given by

Wyjm, (r) = %( )Yjm; (), (8)

where ¢,;(r) satisfies the radial Schrodlnger equation

R i +1)
Q,Ur ar W + U(T')}%j(r) = Eyjd;(r), 9)
and may be normalized such that
/0 dr ¢1}j (T)*(bv’j(r) = Oy - (10)

Combining these two observations, we see that the solutions W/M of the
time-independent Schrodinger equation

HY'M = pg/M (11)
can conveniently be expanded as
1 .
VMR, r) = 2 3 doi (R) Y V(R 1)y (7), (12)
U’j’l’

where only the radial expansion coefficients 7, ],l,(R) remain to be deter-
mined. Substituting eq. (12) into eq. (11), pre-multiplying by

B () VIV (R,

and integrating over R and r with the help of eqs. (6) and (10), we obtain a
set of close-coupled equations for these expansion coefficients:

d? I(1+1)
[dR2 k2 R2 ] T{Jl Zl ]lvj’l' zi%l’(R)a (13)
v ]I I
where 5
1
By = 5IF - Fu), (14)
and

VIM, (R / IR / df / dr 6. (r) VIM (R, 5)°V (R, 1, 7) VI (R, £) 1 ().

(15)
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Several comments about these equations are now in order:

(a)

(e)

Channels vjl with internal energies E,; > E are strongly classically
forbidden, and therefore make a negligible contribution to the wave-
function. Hence, in a practical calculation, the expansion in eq. (12)
can be truncated to a finite number (V) of channels.

With this truncation, eq. (13) becomes a straightforward matrix gen-
eralization of eq. (1.16),

[d_2+k2_l(l+1)

vice m — UR)W(R) =0, (16)

where k* and [(I 4 1) are diagonal matrices with diagonal elements k7
and I(I+1), U(R) = 2uV (R)/R? is a full (N x N) matrix with elements
2V i (R) /1, and ¥(R) is a column vector with elements 1}/ (R).
The potential matrix V(R) is manifestly hermitian from eq. (15). Fur-
thermore, it can be shown that its matrix elements are both (i) real
and (ii) independent of M, neither of which is quite so obvious from
eq. (15). Hence V(R) and U(R) will be assumed to be real and symmet-
ric matrices and we shall drop all reference to the M quantum number
in what follows.

In view of the 1/R factor in eq. (12), the boundary condition on ¥ (R)
at the origin is
»(R — 0) ~ 0. (17)

If there were only one radial equation (N = 1), this would be sufficient
to determine ¢ (R) to within a multiplicative constant A, as discussed
in Lecture 1. However, for N coupled radial equations, there are N
linearly-independent solutions of eq. (16) that satisfy the boundary
condition in eq. (17), as illustrated in exercise 3.2 below.

It is convenient to collect these solutions together as the columns of an
(N x N) regular solution matriz, ¥(R), which satisfies

[% R WR%U ~U(R)]¥(R) =0, (18)
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subject to
U(R — 0) ~ 0, (19)

these two equations only being sufficient to determine ¥(R) to within
a post-multiplicative constant matrix A by virtue of the homogeneity
of the problem.

The arbitrariness in the choice of A can be removed by specifying the
boundary condition on ¥(R) as R — oo, which we shall take to be a
direct matrix generalization of eq. (1.35):

U(R = o0) ~ I(R) — O(R)S, (20)

where I(R) and O(R) are diagonal matrices of incoming and outgoing
waves with diagonal elements that satisfy

Iji(R— o0) ~ k,]_jl/Qe_i(’““fR_l”/Q)

Ovjl(R N OO) -~ kv—jl/Qe—H(kij—lﬂ'/Q)’ (21)
and S is a complex scattering matriz with elements Sy, . (E). [Note
that we have chosen here to use normalization factors of k;jl/ % rather

than vv_jl/Z, where v,; = hk,;/p. This turns out to be more convenient
for some of the things we are about to do.]

Rather than choosing I(R) and O(R) to have the forms in eq. (21) for
all R, and therefore to be solutions of

&,
[ ]{é((%))} —0, (22)

it is better to choose them to be solutions of eq. (18) with the interaction
potential U(R) set equal to zero:

d? s l+1
[+ # - %]{é((%} ~ 0. (23)

In view of the asymptotic forms in eq. (21), this fixes I,;;(R) and
Ovjl(R) as

Lj(R) = k; ki (ki R)
Ouit(R) = ki P hif (ks R), (24)
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where A (z) = —§(z)+ij (). The advantage of these equations is that
they allow eq. (20) to be used as soon as the interaction potential matrix
elements are negligible, whereas the asymptotic forms in eq. (21) are
only valid once the centrifugal potential [(I+1)/R? can also be ignored.
Since the elements of U(R) typically decay much faster than 1/R? (e.g.,
the dipole-induced dipole and dispersion interactions between A and
BC decay like 1/R®), this is a worthwhile thing to do.

FEzxercises:

3.1

3.2

3.3

Use equations (1) to (12) to verify eq. (13).

By diagonalizing the (2 x 2) coupling matrix or otherwise, construct 2
independent solutions of the 2 coupled equations

=2 L) [,

both of which are regular at the origin. (The condition for the two
solutions, 94, and 5, to be independent is that the determinant of the
corresponding wavefunction matrix,

_ ’([Jal(R) ¢a2(R)
VRI= 10 (R) vn(R)

does not vanish identically for all R. The determinant may however
vanish at certain isolated values of R: does yours?)

Y

The Wronskian of the incoming and outgoing waves I(R) and O(R) is
QR) = I(R)O'(R) — I'(R)O(R),

where the primes denote differentiation with respect to R. Use eq. (23)
to show that Q(R) is independent of R, and hence (using eq. (21)) show
that Q(R) = +24. (Hint: Since I(R), O(R), Q(R), k?, and I(I + 1) are
all diagonal matrices, this is just a scalar calculation.)
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3.2 The log derivative method

We have shown in the last section that, for each conserved value of J, the
atom-diatom inelastic scattering problem can be reduced to solving a set of
close-coupled equations of the form

U(R) = W(R)U(R), (25)

where the real and symmetric coupling matrix W (R) is given by eq. (18) as

— k? (26)

and the wavefunction matrix W(R) satisfies the boundary conditions in egs.
(19) and (20). Close-coupled equations with this same generic form also arise
in all other inelastic scattering problems.

The log derivative method® is a stable and efficient method for solving these
equations. It is based on the log derivative matriz Y (R) = dInV(R)/dR,
which is defined at all R for which the wavefunction matrix is non-singular
by the matrix Riccati transformation

¥'(R) = Y(R)¥(R). (27)

Differentiating this equation throughout with respect to R, and using eq. (25)
to eliminate U”(R), we obtain a non-linear differential equation for Y (R)
known as the matrix Riccati equation:

Y'(R) = W(R) - Y(R)™. (28)

Since this equation is first-order, the solution Y (R) is uniquely determined
for all R once an appropriate initial value has been specified, and this initial
value is uniquely determined by the boundary condition at the origin in

eq. (19).

For example, in inelastic atom-diatom scattering problems, the eigenvalues
of the coupling matrix W(R) typically become very large and positive at
small R due both to the centrifugal potential /(I+1)/R? and to the repulsive

6B. R. Johnson, J. Comput. Phys. 13 (1973) 445.
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nature of the short-range interaction potential. Under these circumstances,
it is legitimate to neglect the derivative Y’(R) on the left-hand side of eq. (28)
to obtain the WKB initial value

Nl=

Y(R;) ~+W(R;)>, (29)

where R; lies in the strongly classically forbidden region and the choice of a
positive square root corresponds to a wavefunction that increases exponen-
tially with increasing R (in accordance with eq. (19)). In practice, eq. (29)
can be evaluated by diagonalizing W (R;) with an orthogonal transformation
matrix C(R;) to give a diagonal matrix w(R;) of positive eigenvalues,

C(Ri)TW(Ri)C(Ri) = w(Ry), (30)

and then computing Y (R;) as

1

Y(R;) ~ C(R)w(R;)2C(R;)T. (31)

This initial value is clearly a real and symmetric matrix, and it follows from
eq. (28) and the symmetry of W (R) that Y (R) will remain real and symmetric
for all R.

Once Y(R;) has been initialized using eq. (31), we can use any one of a
number of log derivative propagation methods’ to integrate eq. (28) from R;
to Ry, where R; lies in the classically forbidden region and R; lies beyond
the range of the interaction potential. With Y (R;) in hand, we can then
combine egs. (20) and (27) to obtain

[I'(Ry) — O'(Ry)S] =Y (Ry)[I(Ry) — O(Ry)S], (32)
and solve this equation for the S matrix:
S = [Y(R;)O(Ry) — O'(Ry)] [V (R)I(Ry) — I'(Ry)]. (33)

It is also possible to obtain a more symmetrical expression for S by using the
Wronskian of I(Ry) and O(Ry) derived in exercise 3.3,

I(R;)O'(Ry) — I'(Rf)O(Ry) = +2i, (34)

"See, e.g., D. E. Manolopoulos, J. Chem. Phys. 85 (1986) 6425.
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to eliminate I'(R;) from eq. (33) as follows:

S = [YO-OT'YI-T]
= O‘l[Y—O’O‘l]_l[Y I'1 —1]1
= O MY -00 'Y -00 ' '+00—TITYI
= O'I+o07 'y -o0o oo -1 1
= O7' I+ 07 Y -0'07 07 IO - I'0]
O 'I4+20 'y -00 "0, (35)
where we have made repeated use of the fact that I, O, I' and O’ are all

diagonal matrices and therefore commute. Hence eq. (33) can be written
equivalently as

S = A(Ry) +2i B(R;)[Y (Ry) — C(Ry)] ™' B(Ry), (36)
where the diagonal matrices A(Ry), B(Ry) and C(Ry) are defined by
Ry) = O(Ry)I(Ry)

(
B(R;) = O(Rp)™
(Ry) = O'(R;)O(Ry)™, (37)

and all reference to I'(Ry) has been eliminated. We shall use egs. (33) and
(36) to prove the unitarity and symmetry of the S matrix in the following
section.

FEzxercises:

3.4 Assuming that the elements of the interaction potential U(R) are less
singular than 1/R? as R — 0, show that egs. (18), (19) and (27) imply

I+1
Y(R—)O)N%,

which is manifestly real and symmetric like eq. (31).

3.5 By considering the single-channel (scalar) case for simplicity, and writ-
ing W(R) as W(R) = P(R)?/h*, use eq. (28) to obtain the first two
terms in a power series expansion of AY (R) in A, and hence comment
on the validity of eq. (29).
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3.3 Unitarity and symmetry of the S matrix

One of the nicest features of the log derivative method is that it leads to
an exactly unitary and symmetric S matrix. In order to show this, we shall
begin by supposing that no closed channels are retained in the coupled-
channel expansion, so that all the k,;’s in eq. (21) are real. The diagonal
matrices I(R;) and O(Ry) are then simply complex conjugates, and since
Y (Ry) is real eq. (33) gives

§* = [Y(R)I(Ry) — I'(Rp)] 'Y (Ry)O(Ry) = O'(Rp)] = 87 (38)

But since Y (Ry) is also symmetric, and A(Ry), B(Ry) and C(Ry) are all
diagonal, it is immediately apparent from eq. (36) that

ST =5. (39)
Combining these two results gives
St= (8" =8"=5"", (40)

which proves that a real and symmetric log derivative matrix Y (Ry) leads to
a unitary [eq. (40)] and symmetric [eq. (39)] S matrix.

If some closed channels are retained in the coupled-channel expansion, then
we can write eq. (36) out in block-matrix notation as

[Soo Soc] _ [Aoo 0 ]
Sco Scc B 0 ACC

+ 2~[Boo 0 :| |:Y;)0_Coo Y;)c :|_1 [Boo 0 :|
! 0 Bcc cho chc - Ccc 0 Bcc ’
(41)

from which it is clear that the open-channel submatrix S,, of S can be

calculated as
Soo = Ao + 2iBoo([Y = C] 1), Boo- (42)

We shall leave it as an exercise to show that

([Y = O] )go = [Yoo = Cool (43)

34



where the effective open-channel log derivative matrix Yo, is given by

Yz)o - }/;)O - Y;)C[chc - CCC]ilyvCO’ (44)

and therefore that S,, can be calculated using a formula with an identical
structure to eq. (36):

Soo = Aoo + 2iB,, D’;;)o - Coo]_lBoo- (45)

Now it follows from eq. (21) that if k,; is purely imaginary, k,; = +ik,;,
then Cy;i(R) = O,;(R)Oy;(R)~" will tend to —k,; as R — oo, which is
purely real. Hence the matrix C.. in eq. (44) is real and diagonal, and
Y., is therefore real and symmetric in view of the reality and symmetry of
the full log derivative matrix Y. Thus an identical argument to that given
above shows that the open-channel submatrix S,, of S will be unitary and

symmetric regardless of whether or not there are any closed channels.

Physically, the unitarity of the (open-channel) S matrix ensures that the
incoming and outgoing fluxes in eq. (20) are equal, or that the “total number
of particles in the system is conserved”, while the symmetry of S ensures that
the flux scattered from channel vjl to channel v'5'l" is equal to that scattered
in the reverse direction.

FEzxercise:

3.6 Use the block-matrix identity
b s [rege] = o]
M., M (M_l)co o]’
to verify eq. (43). (Hint: Write the identity out as two separate matrix
equations and then eliminate (M™"').)

3.4 The helicity representation ...

Two remaining issues that we have not addressed are (i) how to evaluate
the potential energy matrix elements in eq. (15) and (ii) how to calculate
integral and differential cross sections for inelastic scattering. Both of these
issues are simplified by transforming to the so-called helicity representation,
and indeed we have already stated the equations for integral and differential
cross sections in this representation in Lecture 1.
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The helicity representation revolves around the molecule-fixed (z'y'z') axes

shown above, which can be obtained by rotating the laboratory-fixed (z, y, z)
axes through the Euler angles Q = (®,0, ¥), where © and ® are the polar
and azimuthal angles of the vector R and VU is a final rotation around R to
bring r into the z'z’ plane.

The advantage of choosing the molecule-fixed 2’ axis to lie along R is that
the projection of the orbital angular momentum m; on this axis is zero, and
hence the molecule-fixed projections of j and J are the same: m}; = M’ = k.
Therefore, both m;- and mj are determined once the helicity quantum number
k has been specified, and it follows from this that the molecule-fixed axes
analogue of eq. (4) does not involve any summation. Le.,

4l

Vi (R = 3 Vi (R) Yo (&) (i bt IM) - (46)

! i
mjml

becomes simply
Vir®R¥) = Yio(R)Yi(E) (jk, 10| k)
= }/20(@,7 (bl)}/}k(ela ¢I) <.7k7 l0|Jk>
where we have referred to the above diagram to obtain the final line (e.g., to

note that the polar and azimuthal angles of r relative to the molecule-fixed
axes are 7y and 0 respectively).
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The functions Vj*(R’,) in eq. (47) are related to the functions Y™ (R, 1)
in eq. (4) by the fact that the molecule-fixed and laboratory-fixed axes,
which define both the primed and unprimed coordinates and the quanti-
zation directions for k£ and M, differ by a rotation through the Euler angles
Q= (®,0,¥). Hence, according (e.g.) to eq. (3.121) of Zare, we have
VIR E) =3 Vi (R, 1) Dy (42), (48)
M

and therefore also

(R E) = ZJ’J’“(R' ') Di/y (—€2) = ZW(R' ) Diye()",  (49)

where Dy, (2) is a Wigner rotation matrix element. Combining this with
eq. (47), and noting that

Yjo(0,0) = (%4:; 1>1/2, (50)
we find that Y (R, 1) can be written equivalently as
(R ) = Xk:C;ff e (7:9), (51)
where p
cli = (;ﬂi) (k, 101Tk) = (1Y Gk, T — klI0)  (52)
and 12
7,0) = (2527 ik, 0) D). (53)

Equation (51) is a key result, because it relates the angular basis functions

M(R,#) of the orbital angular momentum representation (in which the
quantum number [ is specified) to the basis functions V4" (v,9Q) of the he-
licity representation (in which k& is specified in place of /). Indeed one can
show further that, for given values of J and j, the coefficient C’,‘c]lj in eq. (52)
is an element of an orthogonal transformation matrix between the two rep-
resentations, so that eq. (51) can be inverted to give

oY) Z ™M (R, ). (54)
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FEzxercise:

3.7 Use the second expression for C,CJlj in eq. (52) and the orthogonality

relations of the vector-coupling coefficients (Zare, egs. (2.8) and (2.9))

> (Gm|jima, jame) (jima, joma|i'm') = 6,5 mm
mims
and
Z <j1m1:j2m2‘jm> <]m‘]1mlla ]QmIQ> = 5m1m’15m2m'2,
jm
to show that o
S clich = éw
k

and
JiJj
Z Ckl Clc’l - 5kk’7
l

i.e., that the matrix C77 is orthogonal.

3.5 ... and (one of) its applications

The theory in Section 3.1 was developed exclusively in the orbital angular
momentum representation, where the functions Y™ (R, 1) are used as an-
gular basis functions. However, since the helicity representation is only an
orthogonal transformation away, there is no reason why one should not use
this instead as the primary representation.

There are in fact several good reasons for doing so, including the fact (which
we have touched on but not proved) that it simplifies the calculation of dif-
ferential inelastic (and also reactive) scattering cross sections. It also leads to
a useful angular momentum decoupling approximation (the coupled-states or
centrifugal-sudden approximation), which simplifies calculations by reducing
the number of coupled equations that have to be solved.

Unfortunately, we shall not have time to cover these topics in this lecture
(see, e.g., Child® and Pack® for more details if you are interested). However,

8M. S. Child, Molecular Collision Theory, Chapter 6.
9R. T. Pack, J. Chem. Phys. 60 (1974) 633.
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we can at least quickly demonstrate the utility of the helicity representation
by using it to evaluate the interaction potential matrix elements in eq. (15).

Substituting eq. (51) (twice) into eq. (15), expanding V%" (v, Q) as in eq. (53),
and noting that the integrals over the angular coordinates R and f can be
written in terms of v and 2 as

/df{/df:/owsinfydfy/dﬂ, (55)

Viitw o (B) = - Cif Vit e (R) Cidh, (56)
kk'

we obtain

where the potential matrix elements in the helicity representation are given
by
VJ;;CM,U Jlkl(R) = / d?‘/ Sln’)’d’y
Gu; (1) Yk (7, 0)"V (R, 7, 7)Yjrar (7, 0) oo (1)
2J +1
= [ a9 D () Dl () (57)

X

X

But since the integral over the Euler angles can now be evaluated using the
orthogonality relation of the rotation matrices (Zare eq. (3.113)),

. 872
/ A2 DYy (D) Dy (V)" = 57— v (58)

we see that the potential is actually diagonalin the helicity quantum number:

V;)]kv]’k’(R) = 2761@]@"/() d?"‘/0 Smfydy
X ¢u;(r) Yie(v,0)" V(R 7,7) Yk (7, 0)purjr (r).  (59)

This is clearly one advantage of the helicity representation over the orbital
angular momentum representation, since the potential is certainly not diag-
onal in [ (see eq. (56)). Furthermore, it follows from eq. (59) (and the fact
that the vibrational wavefunctions ¢,;(r) can be chosen to be real) that the
potential energy matrices in both representations are indeed (i) real and (ii)
independent of M, as stated in Section 3.1.
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