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1. INTRODUCTION

The field of quantum reactive scattering theory has progressed a great deal
since the mid 1970s. The earliest exact three-dimensional quantum reactive
scattering calculations were performed for the prototypical H+H, = Hyo+H
exchange reaction by Kuppermann and Schatz! in 1975. More recently, the
development of new computational methods and more powerful computers
has enabled equally detailed state-to-state calculations to be performed on
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a variety of more “chemical” reactions such as F+H, = HF+H.? Approxi-
mate state-to-state calculations have also been performed on a whole host of
reactions, including some four-atom reactions such as OH+H,; = H4+H50 in
which all six internal degrees of freedom have been treated exactly and only
the overall rotational motion has been approximated.® In many cases, the
results of these calculations have been invaluable in helping us to interpret
the results of modern reaction dynamics experiments and to assess the role
of quantum mechanical effects in chemical reaction dynamics. This is likely
to become even more the case in the future as the available electronic poten-
tial energy surfaces for chemical reactions continue to improve (see Ab Initio
Potential Energy Surfaces for Chemical Reaction Dynamics).

The central quantity in the quantum theory of chemical reactions is the
quantum mechanical probability amplitude or scattering matriz element,
Spr(E), for a transition from an initial channel r of the reactants to a fi-
nal channel p of the products as a function of the scattering energy £ (and
also implicitly of the conserved total angular momentum quantum number
J). Once this quantity is known at sufficiently many values of E (and J)
and for sufficiently many reactant and product channels, all observable con-
sequences of the reaction can be extracted from it using straightforward and
well-established formulae. !(®)* The observables in question range from highly
detailed quantities such as state-to-state differential cross sections and ro-
tational polarisations? through to highly averaged quantities such as total
reaction cross sections and thermal rate constants,® although these more
averaged quantities can also be computed more directly without first calcu-
lating all of the detailed state-to-state information® (see Chemical Reaction
Rates). The reactive scattering matrix elements Spr(E) thus contain every-
thing there is to know about a chemical reaction, and the central task of
state-to-state reactive scattering theory is to compute them as efficiently as
possible.

The fact that this is not an easy task is what makes reactive scattering
theory interesting. The fundamental difficulty is the so-called coordinate
problem: the coordinates which best describe the products of a chemical
reaction are not the same as those which best describe the reactants, and
this leads to technical difficulties in quantum mechanics where all regions
of coordinate space have to be treated simultaneously. The same difficulty
does not arise in classical mechanics, where there is nothing to prevent one
from running a classical trajectory in whatever set of coordinates one chooses

41



and simply monitoring whether or not it reacts. Neither is the coordinate
problem an issue for other molecular collision processes such as inelastic
energy transfer, in which the optimum reactant and product coordinates are
the same. The coordinate problem is thus a unique and complicating feature
of quantum mechanical reactive scattering (or “rearrangement”) theory.

As a result of this complication, an extraordinarily diverse variety of
methods have been suggested over the years for calculating the reactive scat-
tering matrix elements Spr(E). In order to give the reader a broad overview
of these methods, we shall confine our attention in this article to the sim-
ple collinear model for an A+BC = AB+C reaction and describe how each
method applies to this model in turn. The collinear model itself is introduced
in Section 2, where the reactive scattering problem is defined in terms of the
optimum (mass-scaled Jacobi) coordinates of the reactant and product ar-
rangements. Following this, four different approaches to solving the reactive
scattering problem are described in Sections 3 to 6. The first two of these
approaches attack the problem by introducing new coordinates which swing
smoothly from reactants to products, whereas the second two approaches at-
tack the problem by introducing new expressions for the reactive scattering
matrix elements Spr(F). Section 7 concludes by summarising the advan-
tages and disadvantages of the various approaches to the reactive scattering
problem that are discussed in the preceding four sections of the article.

2. COLLINEAR REACTIVE SCATTERING

The coordinate problem becomes apparent as soon as one considers even
the simplest models for chemical reactions, such as the collinear model for
an atom-diatom reaction

A+BC=AB+C. (1)

The natural coordinates to use to describe the reactants of this reaction are
the distance Rp between A and the centre-of-mass of BC and the distance rgc
between B and C, since these coordinates describe respectively the relative
translational motion of A towards BC and the vibrational motion of the
reactant diatomic. Similarly, the natural coordinates to use to describe the
products are the distance Rc between C and the centre-of-mass of AB and
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T'AB

Figure 1: The coordinate problem for a collinear A+BC reaction

the distance rap between A and B, which are clearly very different from the
reactant coordinates (see Figure 1).

Instead of working directly with these coordinates, it is more convenient
to work with the mass-scaled Jacobi coordinates R, and r, of the reactants:

R, = )\, Ra, (2)
and
Te = A;I 'BC, (3)
where
2 i
A = (M) | (1)
msmcmasc
and with the analogous coordinates R, and r. of the products:
R. = A Rc, (5)
and
Te = /\ci1 TAB, (6)
where )
A = <—mcmiB ) (7)
MAMBIMABC
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The reason for this is that the collinear reactive scattering Hamiltonian
can be written equivalently in terms of the mass-scaled Jacobi coordinates
of either arrangement o = a or c as

K2 [ 52 o2

= _ﬂ (@ + %) + V(Ra,T‘a), (8)

where the reduced mass y is the same in both cases:

1

mamsme ) 2

o= (M) _ (9)
MABC

Indeed the (collinear) mass-scaled Jacobi coordinates of the two arrange-
ments are related by the orthogonal transformation

R.\ (cos© sin® R,
(Tc>_<sin@ —cos@)(ra>’ (10)
where O is the skewing angle between the arrangements:

© = arctan <@> . (11)
I
This transformation is illustrated in Figure 2, which shows a typical poten-
tial energy surface V(R,, 7o) for a collinear A+BC = AB+C reaction as
a contour plot in mass-scaled Jacobi coordinates. Notice in particular that
the presence of a single reduced mass p in Eq. (8) means that there is no
preferred direction in these coordinates and that Figure 2 therefore provides
a kinematically democratic picture of the reaction.

The scattering matrix elements for this collinear model can be defined
by noting that the reactive scattering Hamiltonian H in Eq. (8) separates
at large R, into the sum of a translational kinetic energy operator and a
vibrational Hamiltonian H,:

K 92
H 2 "~ [, 12
where 2 g2
Ha = 3 Ao a\Ta ) 13
5577 Valr) (13



Te

Figure 2: Mass-scaled Jacobi coordinates for a collinear A+BC reaction.
The sector labelled A+BC corresponds to the reactant arrangement and the
sector labelled AB+C to the product arrangement.
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with
Va(re) = lim V(Rq,7a)- (14)

Ro—00
As a result of this separation, the asymptotic solutions of the Schrédinger
equation in each arrangement must be linear combinations of incoming (—)
and outgoing (+) wavefunctions of the form

_1
2

¢§au(Raa Ta) = Vo e e e ¢aU(Ta)a (15)

where ¢4, (r,) is an eigenstate of the vibrational Hamiltonian
Ha ¢au(7'a) = €av ¢au(ra)a (16)

and ke, = \/2u(E — €4,)/h and vy, = hky,/p in Eq. (15) are respectively
the asymptotic wavenumber and velocity in channel awv.

The particular reactive scattering wavefunctions that define the scattering
matrix are the solutions ¢/gq, of the Schrodinger equation

HwEOH/ = EdJEau (17)

subject to the following asymptotic boundary condition in each arrangement
o =aand o =c:

Ra/—)OO

¢Eau ~ ¢E‘al/(Ra’ Ta) 6aa’ - Z ¢Ea’y’ (Ra’a Ta') Sa'u’,au (E) (18)

Note that this boundary condition is simply a linear combination of func-
tions of the form given in Eq. (15), as required by the above separation
argument, and that it corresponds to the physical situation of an incoming
wave in channel av and outgoing scattered waves in all energetically acces-
sible channels o/t at energy E. The coefficients of the scattered waves are
the scattering matrix elements Sy, o (E), which include reactive scattering
matrix elements of the form S, 4, (E), inelastic scattering matrix elements
of the form Sy v (E), and elastic scattering matrix elements of the form
Sa'u,av (E)
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Figure 3: The natural collision coordinates v and v

3. NATURAL COLLISION COORDINATES

The first solution to the reactive scattering problem we shall consider
is the oldest and the most intuitive.® It recognises that R, and r, are the
ideal coordinates to use to describe the reactants and R, and r. are the ideal
coordinates to use to describe the products, and simply “matches” these
two coordinate systems together in the intervening interaction region. The
matching is accomplished by constructing a translational reaction coordinate,
u, which approximates the minimum energy path between reactants and
products and is defined such that u is proportional to —R, in the limit as
u — —oo and to +R, in the limit as u — oo. The remaining coordinate
is then a vibrational coordinate v orthogonal to u which is parallel to r, as
u — —oo and to r. as u — oo, as shown in Figure 3.

Since the motion in v is a bound vibrational motion at each value of
u, the reactive scattering wavefunction g, can be expanded in a basis
set of vibrational wavefunctions ¢, (v) in this coordinate with u-dependent
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expansion coefficients ¥y, ga, (©):
’(/JE'au(uv ’U) = Z ¢n,Eau(u) d)n(v) (19)

Substitution of this expansion into the Schrodinger equation HYgo, = EY¥ga.,
then leads to a set of coupled second-order linear differential equations for
the translational wavefunctions ¢, ga.(u) which can be solved using stan-
dard close-coupling techniques” (see Close-Coupling Calculations for Molec-
ular Collision Processes). This is essentially how Kuppermann and Schatz
performed their H+H, = H,+H reactive scattering calculations in 1975,1
although the three-dimensional problem they studied was of course consid-
erably more complicated than the simple collinear model we are describing
here.

The natural collision coordinates v and v in Figure 3 are intuitively ap-
pealing because they swing naturally from reactants to products in such a
way that v remains a translational coordinate and v remains a vibrational
coordinate throughout the course of the reaction. The price that has to be
paid for this, however, is that the kinetic energy operator and volume ele-
ment in natural collision coordinates are rather awkward,® and this in turn
complicates the calculation. Moreover the problem is compounded in the
three-dimensional case by the fact that a general atom+diatom reaction has
three different chemical arrangements (A+BC, B+CA and C+AB), so there
are in general three different reaction coordinates u between the various pos-
sible reactants and products. Because of these and other difficulties, natural
collision coordinates have now given way to newer and better solutions to the
quantum reactive scattering problem and are simply of historical interest.

4. HYPERSPHERICAL COORDINATES

The basic idea behind hyperspherical coordinates is the same as the idea
behind natural collision coordinates: to find a single set of coordinates that
swings naturally from reactants to products. In this case, however, the idea
is implemented in a way that is motivated more by mathematical consider-
ations than by physical intuition, with the consequence that hyperspherical
coordinate methods currently provide one of the most reliable and widely-
used solutions to the quantum mechanical reactive scattering problem.
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The hyperspherical coordinates for a collinear A+BC = AB+C reaction
are simply the polar coordinates

p=(R2+72)7, (20)

and ,
6, = arct (—a) 21
arctan R, (21)

Note that the hyperradius p is independent of the arrangement label @ by
virtue of the orthogonal transformation in Eq. (10) and that the hyperangles
0, and 6. of the two arrangements are obliged by this transformation to sum
to the skewing angle O:

6, +0.= 0. (22)

The hyperspherical coordinates p, 6, and 6. are shown in Figure 4. Al-
though they do not bear any resemblance to the mass-scaled Jacobi coor-
dinates at small p, it is clear from this figure that the hyperangle 6, will
become parallel to the vibrational coordinate r, and the hyperradius p will
become parallel to the translational coordinate R, within each arrangement
in the limit of sufficiently large p. In this sense, therefore, the hyperspher-
ical coordinates swing smoothly from reactants to products like the natural
collision coordinates in Figure 3.

The main advantage that hyperspherical coordinates have over natural
collision coordinates is that the kinetic energy operator and volume element
are far simpler in hyperspherical coordinates. The collinear reactive scatter-
ing Hamiltonian can be written in terms of p and 6,, for example, as

h2<82 19 1 0

H=-—"—|—+4+-—4+-—
Op? - pOp - p* 003

. )+ V(o0 (23

which is not a great deal more complicated than the mass-scaled Jacobi
coordinate Hamiltonian in Eq. (8), and the integral over collinear coordinate
space of a general function f(p,,) is simply

[ swyar=[" [ $(5,00) pipde. (24)

More importantly, in contrast to the situation described above for natural col-
lision coordinates, comparatively simple Hamiltonians and volume integrals
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Figure 4: The hyperspherical coordinates p, 6, and 6,

are also obtained for a variety of triatomic® and tetratomic® hyperspherical
coordinate systems in three-dimensional space.

The reactive scattering problem in hyperspherical coordinates can in prin-
ciple be solved in the same way as in the natural collision coordinate case
by expanding the wavefunction ¥ g, in a set of orthonormal basis functions
¢n(0,) in the bound “vibrational” coordinate 6, with p-dependent expansion
coeflicients ¥, gau(p):

Ve (9,0a) = 072 S n. 5w (p) 6 (Ba). (25)

Substituting this expansion into the Schrodinger equation HY g, = EV¥gay
then leads to a set of close-coupled equations for the translational wavefunc-
tions ¥ mav(p) which can be solved using standard techniques:”

C;d—pzwn,Eau (p) = ; Wnn' (p) djn’,Eau(p)’ (26)
where 5 o
W (p) = 25 [ 6n(6)" [H(p) = E] 60 (6.) o, (27)
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(a) Large p
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(b) Medium p
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(c) Small p
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Figure 5: Typical potential energy profiles in the hyperangular coordinate 6,
as a function of the hyperradius p

with

H(p) = R’ <d2 1

~552 gz Z) +V(p,0.). (28)

However, whereas the natural collision coordinate v is a simple vibrational
coordinate with a Morse oscillator-like potential energy curve throughout
the course of the reaction, as can be seen by inspection of Figure 3, the
hyperangular coordinate 6, is subject to a more complicated potential energy
profile that changes very dramatically as a function of p (see Figures 4 and
5).

Because of this more complicated potential energy behaviour, it is in-
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efficient to use a fixed hyperangular basis set ¢,(f,) to describe the entire
course of the reaction as in Eq. (25), and a lot of work has consequently gone
in to finding better ways to represent the wavefunction in hyperspherical
coordinates. The most widely adopted solution to this problem is to use a
sector-by-sector adiabatic method in which the hyperangular basis functions
#n(0,) are replaced by the local eigenfunctions ¢, (6,; p¥) of the hyperspheri-
cal coordinate surface eigenvalue problem at the centre p* of each consecutive
sector k in the hyperradius p:

H(p") ¢n(0a; 0*) = €n(0*) ¢ (0a; ") (29)

Although substantial progress has already been made in this direction, the
development of new methods for solving the full three-dimensional version of
this eigenvalue problem in a way that works equally well for the entire range
of potential energy profiles that are encountered at different values of p* is
still a very active area of quantum reactive scattering theory research.°

5. TIME-INDEPENDENT VARIATIONAL METHODS

We now come on to a more global approach to the reactive scattering
problem in which the reactive scattering matrix elements Sy, o, (E) are em-
phasised as the goal of the calculation and the coordinate problem is ad-
dressed merely as an afterthought. Rather than trying to find a new set of
coordinates that swing smoothly from reactants to products, as in the natural
collision coordinate and hyperspherical coordinate methods described above,
the thrust of the methods to be described here and in the following section is
thus to find new expressions for the scattering matrix elements that can be
implemented in a more generic (and in particular a less coordinate-specific)
way.

An abundant source of such expressions is provided by the time-independent
variational principles that became popular in reactive scattering theory in the
late 1980s. There are at least three different scattering variational princi-
ples, associated with the names of Kohn,!' Schwinger,? and Newton, '3 each
of which can be combined with a variety of different scattering boundary
conditions. **'® However, for purposes of illustration, we shall concentrate in
this section on one particularly straightforward variational method known
as the S-matrix version of the Kohn variational principle.'* Furthermore, in
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order to describe this method as simply as possible, we shall begin (following
Zhang, Chu and Miller!*) with a discussion of potential scattering before
considering the added complications that arise for reactions.

5.1 Variational Theory

The potential scattering Schrodinger equation HyYgp = Evp can be writ-
ten in the coordinate representation as

(—h—ud—Q + V(R)> Vu(R) = Ei(R), (30)

where the potential V' (R) vanishes as R — co. As in Eq. (18), the boundary
conditions on the wavefunction ¢g(R) are that it must be regular at the
origin and tend to a linear combination of incoming and outgoing waves at
infinity:

V(R — 0) ~ 0, (31)
and
YE(R — 00) ~ ¢5(R) — ¢5(R) S(E), (32)
where
$5(R) = v aetHE, (33)

with £ = /2uFE/h and v = hk/p. The boundary condition in Eq. (32)
defines the scattering “matrix” S(FE), which in this case is simply a complex
scalar of modulus one and is the goal of the potential scattering calculation.

In terms of these definitions, the S-matrix version of the Kohn variational
principle is embodied in the variational functional

S[] = 3(B) + 3 (3

H— E|¢p), (34)

where 15(R) can be any trial wavefunction satisfying both

Ye(R — 0) ~ 0, (35)

and

V(R = 00) ~ ¢p(R) — ¢i(R) S(E). (36)
Clearly, since the exact wavefunction 9 g(R) satisfies the Schrédinger equa-
tion Hyp = Etp, the corresponding functional S[¢g] is equal to the exact
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scattering matrix S(E). Moreover it is straightforward to show using inte-
gration by parts that the first variation of S[¢g] is

05 [ts] = 6S(E) + %<¢E

H-E \ dp) =0, (37)

and therefore that the functional S[@E]js stationary with respect to varia-
tions d9(R) in the trial wavefunction ¥g(R) = Yg(R) + d¢g(R).

The utility of this result lies in the fact that one can use it to optimise
any parameters in the trial wavefunction in the same way as in a variational
bound state calculation. For instance the trial wavefunction ¢z(R) can be
expanded in a basis set of translational wavefunctions u,(R) as

N,

Ye(R) = uo(R) — Z u, (R)cr, (38)

=1

in which the basis functions u,(R) with 7 > 1 are required to vanish as
R — 0 and R — oo and the remaining two basis functions uy(R) and u;(R)
are chosen so as to impose the boundary conditions in Egs. (35) and (36)
(with S(E) = ¢; as yet undetermined):

uo(R) = f(R) ¢g(R), (39)
and
ui(R) = f(R) ¢5(R), (40)

where f(R — 0) ~ 0 and f(R — o0) ~ 1.
Substituting this expansion into Eq. (34) and requiring

05[]
oc,

=0 (41)

for each coefficient ¢, in turn leads to a system of linear equations for the
optimum expansion coefficients which can be substituted back into Eq. (34)
to give the following optimum (variational) approximation to the scattering
matrix: 14

i
S(E) =~ - (Moo — MIgMi;' My ), (42)
where
Moo = (ug | H — E'| uo), (43)
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and
(Mio), = (ur [ H — E | u), (44)

and
(MH)T’T = <’U:/ |H —F | ’I,LT>. (45)

In this method, and indeed also in all of the other variational methods that
have been used for reactive scattering,'® the calculation of the scattering
matrix S(F) is thus reduced to a standard quantum chemistry calculation
involving basis sets, matrix elements, and linear algebra.'*

5.2 Implementation

The Kohn variational method described above for potential scattering
extends in a straightforward way to the collinear reactive scattering problem
described in Section 2 without the need to introduce any special coordinates
(i.e., one can continue to work with the optimum mass-scaled Jacobi coordi-
nates of the reactant and product arrangements). Moreover the extensions
that are required are comparatively minor, and the overall structure of the
method remains the same.

In terms of the definitions in Section 2, and noting in particular that
the vibrational eigenfunctions ¢,,(r,) in Eq. (16) can be chosen to be purely
real (so it is immaterial whether or not they are complex conjugated in bras),
the reactive scattering version of the variational functional in Eq. (34) for a
general scattering matrix element Sy, o, (F) becomes '

S[&Ea’u’; Q;Eau] = Soz’ll',au(E) + %’<1LEO/V’ H-FE ‘ ib'Eau>; (46)

where the trial wavefunctions &Ea,, and 1/?Eaf,,' are both regular at the origin
and satisfy the following asymptotic boundary conditions in arrangement
[cf. Eq. (18)]:

~ Ra//—) _ ~

wEau ~ = ¢an(Raa Ta) 5040/’ - Z ¢Ea”y” (Ra"u Ta”) Sa”u”,au(E)a (47)

V”

and

Rall —00

/lZEaIUl ~ ¢E‘a’l/’ (Ra/, Ta/) 6alall — z (bga”ll” (Ra”; ’I‘au) Sallyll’alul (E) (48)
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Once again, since the exact wavefunction vz, satisfies the Schrodinger equa-
tion HYgay = Ev¥pa., the functional S[Ygy ., YEq] is clearly equal to the
exact scattering matrix element Sy, 4, (E). Moreover one can show explic-
itly by considering the first variation of S[¥gqay, ¥Eay| that the stationary
property of Eq. (34) also carries over to Eq. (46).14

As in the potential scattering case, this stationary property can be ex-
ploited by using a basis set expansion of the trial wavefunctions Vgay and
Yo However, in view of the boundary conditions in Eqgs. (47) and (48),
the natural expansion of each trial function is now a multiple-arrangement
expansion of the form

,‘ZEQV = uaOV( ¢au Ta Z Ua”r”u” a”) ¢a”u” (Ta”) Ca/l 71y Eow (49)

a”T” U”

and

'(/]E‘alul = ’U/aloyl( a/) Qsa 'yt ’f'a/ — E ualITIIVII au) d)a”u” (Ta”) CaHTHVII’EaIVI’

(50)
where the translational basis functions uq, (R.) are defined in the same way
as before (except that they are now also labelled by the arrangement index
« and the vibrational quantum number v so that the k£ and v of poten-
tial scattering can be replaced by the k., and v,, of reactive scattering in
the asymptotic forms of uq,(Rs) and ua1,(Re))- In particular, the coeffi-
cient cyr1pr Eay in Eq. (49) can be identified with the quantity gauuu,a,,(E)
in Eq. (47), and the coefficient cyv1,7 por in Eq. (50) with the quantity
Sau,,u,all,l(E) in Eq. (48)

Substituting Egs. (49) and (50) into Eq. (46) and performing the varia-
tional calculation
aS[/lZJEa’IJU wEau] — 85[¢Ea’u’a wEau] -0 (51)

acaIITII ol 7Ealyl aCaHTHVH JEav

for each expansion coefficient cyry1 goy and cyrrnyr o in turn leads di-
rectly to a matrix generalisation of Eq. (42),

7
S(E) =+ (Moo — MIpM;' My ), (52)
where now
(Moo)alyl,au = <u:;loul¢a’y’ | H — E | uaou¢alj>’ (53)
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A+BC

Figure 6: Typical basis functions in the multiple-arrangement expansion used
in variational methods

and

(M10) o710 qr = (U bt | H — E | tigonBar), (54)
and

(Mi1) wrvtary = (UgyrGarv | H = E | tiaryGaw)- (55)

Thus the calculation of the reactive scattering matrix S(£) again boils down
to a standard quantum chemistry calculation involving basis sets, matrix
elements, and linear algebra.

The only really new complication in the reactive scattering case that
did not arise for potential scattering comes from the multiple-arrangement
expansions in Egs. (49) and (50) (see also Figure 6). As a result of these
expansions, the Hamiltonian and overlap matrix elements that are required in
Eqgs. (53) to (55) include both direct matrix elements between basis functions
in the same arrangement,

//uar’u’ (Ra)QSaU’ (Ta) [H - E] uaru(Ra)¢au(ra) dRad'raa (56)
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and more complicated exchange matrix elements between basis functions in
different arrangements:

/ / Uyt (R Ybarns (rer) [H = E] ttars(Ra)baw(7a) dRadra.  (57)

In order to evaluate these exchange matrix elements, one clearly has to
perform the coordinate transformation in Eq. (10) so that 4y, (R ) and
¢ar (ror) can be evaluated as functions of R, and r,. This is not how-
ever particularly difficult, and even with the coordinate transformation the
evaluation of the required matrix elements is generally only a small part of
the calculation when compared with the linear algebraic construction of the
matrix M} My in Eq. (52).

Finally, while we have confined our attention here to one particular varia-
tional method, it should be stressed that all of the other variational methods
that can be used for quantum reactive scattering calculations involve the
same basic ingredients of basis set definition, matrix element evaluation, and
linear algebra.'® At the level of this article, the differences between the var-
ious possible time-independent variational methods will therefore simply be
glossed over, although these differences can actually be quite important for
large-scale quantum reactive scattering calculations. The interested reader
is referred to two earlier reviews of quantum reactive scattering theory for
more details,® both of which were written at the end of the 1980s when
variational methods were at the height of their popularity.

6. THE TIME-DEPENDENT WAVEPACKET METHOD

The final solution to the quantum reactive scattering problem we shall
consider is the time-dependent wavepacket method'” (see Wave Packets).
This is one of the simplest ways to solve the Schrédinger equation for a chem-
ical reaction, and it is also rapidly emerging as one of the most powerful.?3
Moreover it has the great advantage that its numerical implementation via
the techniques described elsewhere in this volume is only a small step away
from its theoretical formulation, which makes the method especially easy to
justify and explain.

The time-dependent wavepacket method for state-to-state reactive scat-
tering is based on the following remarkable expression for the reactive scat-
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Figure 7: Schematic illustration of the time-dependent wavepacket method
for state-to-state reactive scattering

tering matrix element S, 4, (F) involving the Fourier transform of a corre-
lation function Cyyr 4, () between an initial reactant wavepacket x,, and a
final product wavepacket x. (see Figure 7):

1

Scu’ av FE)=—- —
B = T8E B Totes)

/ TetBng  dt,  (58)
0

where '
Ccu’,au(t) = <Xcu’ ‘ e_ZHt/h ‘Xau) . (59)

A number of different derivations of this expression have been given in the
last few years, ranging from the straightforward derivation given by Dai
and Zhang'® to the more formal derivation given by Tannor and Weeks.'®
However, nearly all of these derivations have considered the case where the
lower limit of the time integral in Eq. (58) is replaced by minus infinity,
which places unnecessary restrictions on the initial wavepacket Xg4,. (One
of the few notable exceptions? to this is the variational derivation of Kouri
and coworkers, 2(®) which arrives at Eqs. (58) and (59) in the equivalent
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time-independent form

<Xcu’ | G+ (E) ‘ Xau)

Scu’,au E) = —ih = ) (60)
B = o 0 B | xar)
where 1 oo
+ — Tim — +i(E+ie—H)t/h
G*(E) = lim — /0 e dt.) (61)

In order to clarify this point, and at the same time justify the time-dependent
wavepacket method, we shall now describe how Eq. (58) can be obtained in
a way that highlights the implications of its causal (¢ > 0) time integral.

6.1 Wavepacket Theory

The first observation that is needed to obtain Eq. (58) is the fact that
the orthonormality of the vibrational eigenfunctions ¢, (7)) can be used to
rewrite the boundary condition in Eq. (18) as

<Xa’1/’ ‘wE‘au> - <Xa’u’ |¢Ea'y'>5a’a5u’,u - <Xa’1/’ ‘ ¢Ea’y’>SQIV’,aV(E)J (62)

where Y., can be any localised wavepacket in the asymptotic region of
channel o (i.e., any wavepacket of the form

Xa/v' (Ra’7 ""a’) = Go'v (Ra’) ¢a’1/ (Ta’) (63)

in which the translational component g, (R.) is localised at sufficiently
large R, ). Indeed specialising Eq. (62) to the case where o/ = cand a =a
immediately gives

<Xct/’ ‘QpEau) = _<Xcu’ |¢Ecy’>SCU’,aV(E)7 (64)
and hence the required reactive scattering matrix element S., 4, (EF) as
St an(E) = _ Yo [Vpaw) (65)

<XCU' | ¢}5cu’> -

The next task is to eliminate the scattering eigenstate 1 g,, from Eq. (65).
The easiest way to do this (at least formally) is to use the fact that the
microcanonical density operator §(F — H) can be written in terms of the
complete set of scattering eigenstates Vg, as

5(E - H) = % Z|¢Eau><¢Eau|’ (66)
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where the factor of 1/(27%) comes from the normalisation of the incoming and
outgoing wavefunctions ¢z, in Eq. (15).?! Combining this with Eq. (62), it
follows that the effect of operating with 274 §(E— H) on a general asymptotic
wavepacket X, of the form in Eq. (63) is

Qﬂhd(E - H)l Xa’l/’> = | wEa'U'><¢E‘a’u’ | Xa’U’>
- Z‘ wECW><¢Ea’V’ ‘ Xa’U’)'Sa’u’,aV(E)*a (67)

and hence that the effect of 277 6(E — H) on a purely incoming wavepacket
Xow (i-€., a wavepacket that satisfies (¢L .. | Xarrr) = 0) is simply

2,/Thd(E’ - H)|on’u’> = |¢Ea’u'><¢£‘a’u’ |Xa’V'>' (68)

The scattering eigenstate 1g,, in Eq. (65) can therefore be calculated as

§(E = H)| Xav)
av) — h — ,
e A T (69)
to give
Scy’,au(E) = —97h <Xcu’ |(5(E — H) |Xau> (70)

<Xcu’ ‘ ¢Ecu’><¢iau ‘ Xau> ’

where we have assumed that the reactant wavepacket x,, contains only in-
coming waves.

The third and final stage of the argument is simply to replace the delta
function §(E — H) in Eq. (70) with its Fourier representation

1 [+
OB~ H) =5 - /_ erE A gy, (71)

to obtain

1
<XCU' | ¢Ecu’><¢1_?au | Xau)

where Cyyr 4, (t) is defined as in Eq. (59). Now although Eq. (72) looks very
similar to Eq. (58), except for the lower limit on the time integral, the dif-
ference between the two equations is actually quite remarkable. It is clear
from the above derivation that Eq. (72) will only give the correct result if

Scu’,au (E) = -

/ =P, (b dt,  (T2)
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the reactant wavepacket x,, is composed purely of incoming waves, for other-
wise Eq. (69) for 1,4, will be incorrect. The remarkable thing is that simply
replacing the lower limit of the time integral with zero makes the equation
correct more generally, as explained in the following section.

6.2 Causality

Clearly, since the reactant wavepacket x,, is assumed in Eq. (72) to be
both purely incoming and localised in the asymptotic region of channel av,
its entire history xa,(t) = e """y, with ¢t < 0 will also be confined to the
asymptotic region of the reactant channel by virtue of the separation of the
Hamiltonian H in Eq. (12). This history will therefore have zero overlap
with x., and the correlation function C\p 4, (t) = (Xev' | Xar(t)) Will be zero
for all ¢ < 0. Thus negative times will not contribute to the time integral
in Eq. (72), which can therefore by replaced by Eq. (58). However, this still
leaves the restriction that x,, must be composed solely of incoming waves.

In order to remove this restriction, we can now turn the argument on its
head and use the fact that the lower limit of the time integral in Eq. (58) is
zero rather than minus infinity. In particular, since we have established that
Eq. (58) is correct for a purely incoming reactant wavepacket, let us consider
what happens to this equation when we add an arbitrary outgoing component
0Xav 10 Xqv that is also localised in the asymptotic region of channel av:

X;u(Ra: ra) = Xau(Ra, T’a) + 5Xa1/(Ra; Ta). (73)

Since the correction dy,, is assumed to be purely outgoing we immediately
have (¢z., | OXav) = 0, which shows that the addition of an outgoing com-
ponent to xg, will not change the denominator of Eq. (58). Furthermore,
since 0y, is assumed to be purely outgoing and localised in the asymptotic
region of channel av, its entire future 6y, (t) = e /"5y, with ¢ > 0 will
remain in the asymptotic region of the reactant channel and therefore have
zero overlap with y.. Thus the addition of an outgoing component to X,
will not change either the numerator or the denominator of Eq. (58), and we
have shown that this equation applies equally well to X/, as it does to X, .
Changing the notation back from X/, to X, therefore confirms that
Eq. (58) is valid for any reactant and product wavepackets of the form in
Eq. (63), provided simply that the denominator in Eq. (58) does not vanish
(i.e., provided the reactant wavepacket X,  has a non-zero incoming com-

62



ponent and the product wavepacket x., a non-zero outgoing component at
energy E).

6.3 Implementation

The practical application of the time-dependent wavepacket method to
a collinear state-to-state reactive scattering problem simply involves the
straightforward numerical implementation of Egs. (58) and (59). For instance
one can represent the Hamiltonian H and the initial and final wavepackets
Xav and X using a standard discrete variable representation in the reac-
tant mass-scaled Jacobi coordinates R, and r, (see Discrete Variable Basis
Sets), thereby eliminating the need for any special coordinates that swing
smoothly from reactants to products, and one can perform the time-evolution
in Eq. (59) using any one of a variety of standard wavepacket propagation
techniques®? (see Time Dependent Quantum Methods). Moreover a similar
approach can also be used for both triatomic'® and tetratomic? reactions in
three-dimensional space.

There is however one important difficulty which makes this approach sig-
nificantly less straightforward than it sounds. In order to use a finite rather
than an infinite grid, one must absorb the wavepacket X, (t) = e /"y,
as it approaches the grid boundary so as to avoid any unphysical reflections.
The standard way to do this is to employ a negative imaginary absorbing
potential —ie(R,,7,) at the edge of the grid.>!® However, one then has to en-
sure that the parameters in this absorbing potential give complete (or nearly
complete) absorption of the wavepacket, and this is not possible for the low
translational energy components of the wavepacket unless one uses a very
large absorbing region (and therefore also a very large grid). It follows from
the analyses of Neuhauser and Baer? and Child,?* for example, that the
width of the absorbing region for a linear negative imaginary absorbing po-
tential must be at least as large as the de Broglie wavelength A = h/(2uE};)?
at translational energy E}, and Seideman and Miller have obtained the same
result semiclassically for a more general class of negative imaginary absorbing
potentials.?> Clearly, therefore, the required width of the absorbing region
becomes infinite as the translational energy goes to zero.

As a result of this difficulty, and also the simple fact that the lower the
average translational energy of the reactant wavepacket the longer it will
take to react (and therefore also the larger the number of iterations that will
be required in the wavepacket propagation algorithm), the time-dependent
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wavepacket method is at its best in situations where low reactant and prod-
uct translational energies are comparatively unimportant (for example in the
study of reactions with significant activation barriers). In such situations, and
also in photodissociation theory where high photofragment translational en-
ergies are the norm (see Photodissociation), the time-dependent wavepacket
method can however be eztremely effective.?

7. CLOSING REMARKS

In this article, we have considered four very different methods for solving
the state-to-state reactive scattering problem in the simple (but nonetheless
typical) context of a collinear A+BC = AB+C reaction. Of these four
methods, the natural collision coordinates described in Section 3 are now
simply of historical interest, but the remaining three methods are all still
widely used in quantum reactive scattering calculations. The very fact that
this is the case shows that all three methods have their advantages and
disadvantages, and that no one method has yet been discovered that is ideal
for every reaction. In order to emphasise this fact, we shall now close with a
few comparative remarks on the merits of each method in turn.

The hyperspherical coordinate method described in Section 4 is charac-
terised more by its generality and reliability than by its simplicity or compu-
tational efficiency. It is equally applicable to both triatomic® and tetratomic?
reactions, and it has also been used in conjunction with reduced dimensional-
ity approximations to study even larger polyatomic reactions?® (see Reactive
Scattering of Polyatomic Molecules). However, it is considerably more dif-
ficult to implement for three-dimensional reactions than either of the other
two methods, largely because of the difficulties posed by the hyperspheri-
cal coordinate surface eigenvalue problem (see Eq. (29)), and the fact that
it involves solving a system of close-coupled equations at each energy (see
Eq. (26)) can make it significantly less efficient than the time-dependent
wavepacket method if results are required at many energies.

The time-independent variational methods described in Section 5 are
equally reliable and general as the hyperspherical coordinate method, al-
though it is probably fair to say that they have not yet been used to study
quite such a diverse variety of chemical reactions. Their main advantage lies
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in their simplicity, and indeed their implementation boils down to perform-
ing little more than a standard computational quantum chemistry calculation
involving basis sets, matrix elements, and linear algebra.'* The cost of this
simplicity, however, is that the size of the matrices involved in these methods
is one full dimension (p) larger than the size of the matrices that arise in the
hyperspherical coordinate method, and it can rapidly become difficult to fit
them into computer memory.

Finally, the time-dependent wavepacket method described in Section 6
is both extremely simple and highly efficient, but falls down in terms of its
reliability at low translational energies. Its efficiency derives from the fact
that the entire range of energies required in the calculation can be extracted
from the propagation of a single wavepacket for each reactant quantum state,
rather than having to repeat the calculation at each separate energy.®1!®
The price that has to be paid for this, however, is that the reliability of
the wavepacket method is questionable near channel thresholds because it
approximates the scattering boundary conditions with an empirical absorbing
potential rather than applying them correctly at each energy.
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