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Quantum mechanical correlation functions

Many dynamical observables can be related to real-time
correlation functions of the form

cap(t) = %tr P A(0)B(1)]

where
Z =tr [e_ﬁH] :

and
B(t) _ €+th/hB€_th/h.



For example, diffusion coeflicients are given by

1

D(T) = 3 /OOO Cy.v(t) dt,

chemical reaction rate coeflicients by

where



The standard real-time correlation function is

cap(t) = %tr [e_ﬁHA(O)B(t)] :

whereas the Kubo-transformed correlation function is

Gap(t) = iﬁ /O " [e—w—MHA(O)e—AHB(t)} d.

There are several reasons why ¢4p(t) is the more classical of the
two objects — and it is ¢4p(t) that is approximated in RPMD.



If
1 > :
Cap(w) = —/ e “reap(t)dt,
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and | -
Cap(w) = —/ e e ap(t)dt,
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then it is straightforward to show by working in the basis of energy
eigenstates that

~

Cap(w) = D(w)Cap(w),

where
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1 — e Bhw
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Proof:
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It follows from this that dynamical observables can be
written equally well in terms of ¢Ap(%).

For example:

Qr(T)
and o
TOW™ =
n(w)o(w) = %Cu-u(w),
where

~ 1 ~ —iwt
Cuplw) = %/ e ", . (t)dt.

— 0

Notice that none of these equations involves A!



Ring polymer molecular dynamics

Based on the classical isomorphism:

______ () = N(T)/V/Br
AN A(T) = h/v/2mkT

®
7 = trle P
7 = 1 /dp/dqe BrnHp(p,q)
(27h)
where
p q — —"|' mw (QJ q;5— 1) “|'V(QJ) 3 B/H _1/571
71=1




Proof (as in earlier lectures):

Z = tr [e_BH] — tr {(G_B”H)n] where 3, = B/n.

So
Z:/dql--'/dqn (e P M) . Aqnl e |qu)
with

(gle” P |q") = (q| e PV PnT e PV /2 )

_ L[ gpeBart2mtin(a—a) /h-palV(@)/24V ()2
2mh
1/2
_ L (2mmA T s me? (a-a)* V(@) /24 V () /2)
2rh \ B,
= L[ gy e Bl 2mimel (=002 24V (@)/24V (0)/2)
2mh

gives Z with an error of O(n™?).

Y



Path integral molecular dynamics:

PIMD uses the ring polymer trajectories

, OH,(p, , 0H,,(p,
= 22 OHn(p,q)
op dq

as a sampling tool to calculate the exact values of static
equilibrium properties such as

(A) = —tr|e 5HA].

1
Z
Ring polymer molecular dynamics:

RPMD uses the same trajectories to calculate approrimate
Kubo-transformed correlation functions of the form

cap(t) = 5% /B d\ tr {6_(5_>‘)HA(0)6_>‘HB(75)} .



Ring polymer molecular dynamics:
The RPMD approximation to

B
Gap(t) = BLZ /O dA tr [e_(B_A)HA(O)e_AHB(t)}

is simply

. 1 _
can(t) = G [ dvo [ dag e P04, () By a),

where

Classical molecular dynamics in an extended phase space!



In short, the RPMD approximation includes both:

tunneling and zero point energy
’ ’. " ~
e’ .
LR
. » ..
~ .. - , ~

But it neglects QM interference effects in the real-time dynamics.



One can show that RPMD is:

1. Exact in the high temperature limit

2. Exact in the short time limit

3. Exact in the harmonic limit (for linear A or B)
4. Exact for A =1 (the unit operator)

5. Faithful to all QM symmetries

6. Consistent with the QM equilibrium distribution



Eg: when A = 1, we have

Gip(t) =

\H N"‘

d)\ tr [e” P B(t)]

/ d)\tr —(B=AHy e_AHB(t)}

N

tr [e P B(t)]

- e—BHe—I—z'Ht/hBe—z’Ht/h_

NI~ N[~ &

— Zir _e—th/he—ﬁH€+th/hB_

= —tr[e ?"B] =(B),



And in RPMD,

QL

dqo e—Ban(po,qo) Bn(Qt)

C1B( Po

27rh ny/

f]

27rh 7 /dpt/d(]t e~ BnHn(po,qo0) B (q¢)
fov]
fo]

da e—Ban(pt,qt) Bn(Qt)

27rh g | P

QL

27rﬁ ny

=(B),

where we have used Liouville’s theorem and the conservation of Hy,(p¢, qs).



Non-local operators

So far we have only considered local operators. But (e.g.),

2 - :
%tr [e—ﬁHq e TiHt/ My e—th/ﬁ} — Z¢r e—Bqu+th/h% H, ] e—z’Ht/h]

d
dt
d T _gn +iHt/h, —iHt/h
= atr e qe ve }
d —BH —iHt/h  _+iHt/h

= %tr [e e qe v}

— _¢r e—BHe—th/h% (H, q] e+th/hv]

_ iy |e—BH —iHt/h, e—l—th/hv}

Y

_ iy |e—BH oTiHt/ e—z’Ht/h}

d? . . d?
L Cyp(t) = —ﬁcqq(t) and (similarly) ¢,,(t) = —chq(t).



So in RPMD,

Cop(t) =

d2 2 B
~tolt) ~ i [ i [ dne ) g

_%/dPO dqoe BnHn(po, QO)G Uy

i) i |

d —BrnHrn(pt,qt) 5

- % dpt dqt (& ’ q ’Ut

d —BnHy (pO QO) = 3
—a dpo | dqge d_40g

Y

/dpo/dqoe BrnHy(po,q0) 55 T_+Tg
<[

N/dPO/dQOG BnH (p07q0) rUOUt,



The same argument applies to correlation functions involving
other non-local operators.

E.g., chemical reaction rate coefficients can be calculated from

O, (TYK(T) :/OOO Erp(E)dt = Tim Ea(t) = — lim Le,(t),

t— o0 t—0o0 d

where . P
Crp(t) = dthS(t) = —@535(?5),

both in QM and in RPMD.

Which brings me on to...



Ring polymer reaction rate theory

Consider a simple 1d barrier transmission problem: V(g)

The exact QM rate coefficient is

I
k(T) = 0.(T) lim (7)
where -
N 1P —(B-WH _AH g q
()= /0 dhir fe F(0)e M h(r)]
with

i NB:
= _[H,h d h=h(qg—q").

Ji H,h] an (4=4) 1. k(T) is independent of g*.
2. &t = 04) ~at'/? ~ 0.

F

(Flux) (Side)



The classical limit;

The classical limit rate coefficient is
1

K(T) = O.(7) lim (1)
where
cfs =3 h/dpg/dqge H(po,0)
XS(CIO—V )%Xh( g i)-
Flux (r =0) Side (r > 0)
NB:

1. k/(T) is independent of g*.
2.Ast — 0, h(g; — g*) — h(po), giving

KLTST(T) = Cfs<t —04)/0(T) =

l\)|>—*

(|g]) e PV,




Quantum

Efs(t)/Qr<T)

No TST limit

A

Exact
rate

Classical
(1) /0x(T)
A
TST limit Classical
rate
e
t

— |

DO | —

<|Q|>cl G_Bv(qi)



“Quantum transition state theory”:

The centroid density QTST rate is ol
« | e 1
1 Sy
RY(T) = 2 (Jdl) o Q(a")/Q0(T) S 2 b
s’.~. R
where °
1
Ty d d BrHn(p,d) §(7g — of
Q(q*) (%h)n/ p/ qe (@—q")
with
1
7= 2—:1 g :
I= q
NB:
1. e P(@) — 0(¢%)/0,(T) includes (some) QM tunneling (good)

2. However, kQTST(T) is exponentially sensitive to g* (bad)



Ring polymer reaction rate theory:

Flux: P
@
The RPMD rate coefficient is :‘,o <>—‘L\.> ﬁo/ m
1 \'..- /"
RPMD _ o .
g () = OL(T) 15,1 (8
where t=0
(2mh)"
% 8(qy — i)@h(_ —qh 1 A
Qo= q7) ~1M\de — 4 Side: ; e
“o\ s
with
1L 1
q = o 45, P = D

g=1 t >0




KRPMD(T) ..

1. Simple to compute
2. Exact in the high temperature limit

3. Exact for a parabolic barrier
4. Equal to kQTST(T) in the limit as ¢t — 0,
5. Bounded from above by kQT5T(T)

6. Independent of ¢*

...s0 kRPMBP(T) is to kQTST(T) what k(T) is to k< TST(T)!



Some tricks of the trade

Integrating the RPMD equations of motion:

The standard (symplectic) velocity Verlet method for the Hamiltonian

p2

H = —+V(q)=Ho+V
(p.q) =5~ +Vlg) = Ho+
1S
D p— %V’(q) exact evolution under V' for time dt/2
q<q+ dt% exact evolution under Hy for time dt

p+p——V'(q) exact evolution under V for time dt/2



We can do the same thing with the ring polymer Hamiltonian

n 2 n
p; 1
H = ﬁ + 5””%%(%‘ —qi—1)°| + ZV(%‘) =Ho+ V.
j=1 j=1

Since H( is harmonic, its evolution involves the normal modes
mn mn
Pk = E p;iCjr  and  qx = E q;Cjk,
j=1 j=1

where

(V/1/n, k=0

C. = ) V2/neos@mjk/n), 0 <k <n/2
e V1/n(-1)7, k=n/2
(\/2/nsin(2mjk/n), n/2<k<n.




In the normal mode representation, Hy becomes

SR L o
Hy = Z [% + §mwk%]
k=0

with wr = 2w, sin(k7/n).
The time evolution through dt is therefore
Dk - cos wydt —mwg sin widt\ [ pr
(’]Vk (1/mwk) sin wkdt COS wkdt gk 7

followed by a transformation back to the bead representation

n—1 n—1
Pj = Z Cjkﬁk and q; = Z CijNk
k=0 k=0



Aside on centroid molecular dynamics:

The adiabatic implementation of CMD can be obtained simply by
changing H; in the normal mode representation to

H :nz_:l ﬁ+1mw262
D omy T2 TR

where mg = m and mg~1 < m.

This adiabatically separates the internal modes of the ring polymer
from the centroid mode. It is necessary to use a smaller time step dt
to correctly follow the motion of the internal modes and it is also
desirable to attach these modes to a thermostat to ensure canonical
sampling.

The net result is classical molecular dynamics on a free energy surface:
the centroid potential of mean force.



Ring polymer contraction:

The real bottleneck of the calculation is the evaluation of the
forces associated with the potential

Vo(q) = ZV(q»,

which seems to require n times the effort of classical MD.

However, most empirical potentials can be split into two parts,

Vi(g) = Vs(q) +Vi(q),

where Vg (q) is short-range and rapidly-varying and V7, (q) is
long-range and slowly-varying.



E.g.: The Coulomb potential is often split
into short- and long-range parts

f(r) =erf(\/7r/o) (dashed)
fir<o)=2(r/o)—=2(r/c)® + (r/o)* (solid)



Now if V7, (q) is sufficiently slowly varying over the length scale
of the ring polymer ({r? >1/2 A(T)/+/8m), we can write

Va(q) ~ Z Vs(qj) + nVL(q) where % Z

g=1

Within this approximation, the forces are

_OVala) _ dVs(gy)  dVi(q) 9q
4 dg; dg  dq;°

ILe.,

V() _  dVs(g) dVi(g)
(9qj d(]j dcj

Note that the RPMD equations of motion with these forces will
exactly conserve the RPMD Hamiltonian with the approximate

Vi (a).



In practice, the contraction can be implemented as follows:

Vo(q) = Z Vs(g;) + nVi(q)

=D _Vslg)) +n[V(@) - Vs(q)]

7) + Z Vs(g5) —Vs(@)]-
71=1

Full potential on centroid Plus a short-range correction
(just one Ewald sum) on each bead (zero beyond o)



This works extremely well. E.g.:

3 I I I I I I I I I I I I I
2.5
o (A) | D (A% psY)
2 L
3 0.402(3)
Q1.5
> 4 0.397(3)
1
5 0.399(3)
0.5 -
_ | 00 0.400(3)
0 J. T (I I N I




And it gives a method with purely classical computational effort in the limit
of infinite system size:

relative cpu time

~
—

classical effort
500 1000 1500 2000

number of water molecules



Aside on PI+GLE and PIGLET:

Here are the PI+GLE results for
liquid water that Joe Morrone
showed you on Tuesday evening:

Notice how the PI+GLE (V)
converges more rapidly than
(T).
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We have recently fixed this
by designing a new PIGLET

T

method that converges (T') 200F _
jUSt asS rapldly as <V> i PIGLET = i
100 | PI+GLE =

PIMD =z
|

<Tg—T,g> [mMmeV]kV=V 4> [meV]
o
S

50

>

ST .

ElS N .

AN :

=10 E
M. Ceriotti at el. Lot .
submitted to PRL. = SE o o o -

2 3 4 6 8 12 16
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And finally:

All of the equations in these notes have been given for a simple one-dimensional
model problem.

However the multidimensional generalisation is entirely straightforward when
identical particle exchange effects can be ignored.

E.g., For a system with NV Cartesian degrees of freedom the partition function

becomes |
7 — qNn AN q ¢~ BnHn(p;a)
(QWE)N”/ p/ 4e
where
H,(p,q) =) ot §miwi(qi,j — qij-1)?| + D V(gL an.)-
i=1 j=1 ¢ j=1




Example applications

Quantum diffusion in liquid para-hydrogen (2005)
Quantum diffusion in liquid water (2005)
Neutron scattering from liquid para-hydrogen (2006)
Proton transfer in a polar solvent (2008)
Diffusion of H and Mu in water and ice (2008)
The IR spectrum of liquid water (2008)

Gas phase chemical reaction rates (2009)
Competing quantum effects in liquid water (2009)
The dynamics of the solvated electron (2010)

A re-entrant quantum glass transition (2011)
Enzyme-catalysed hydride transfer (2011)

Aqueous electron transfer (2011)
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Quantum diffusion in liquid para-hydrogen
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Inelastic neutron scattering from liquid para-hydrogen (at 14 K)

1 o :
Sine (K, w) = —/ e_MtFS(ﬁ;,t) dt;

21 J_
2 at 1 [t
Fy(k,t) ~e "), t) = —i—+—/ t—1t dt’.
1 -1 | -1
Ke(0) [A ] Kg(w') [A ]
1.78 2.54 3.17 3.71 3.55 4.34 4.99
0.20
= 0.15
E
2 010
S
LL
Z
o 0.05
-




D/A%ps’

1.6
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1.2

0.8

Quantum diffusion of Mu, H, D in liquid water

m  (Classical -
e RPMD

i The classical results satisfy

m/m . D(m) — (mH/m)1/2 Dh0p+Dcav



D/A%ps’

1.6

1.4

1.2

0.8

Quantum diffusion of Mu, H, D in liquid water

Classical
RPMD

But thermal QM “swelling”
strongly inhibits the inter-
cavity hopping of Mu:

(Y2 o ATV
A(T) = h/V2rmkT

The net result is hardly any
isotope effect in the RPMD
diffusion coefficients of Mu,
H and D - in good qualitative
agreement with experiment.
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Quantum fluctuations can promote or inhibit glass formation
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T. E. Markland et al.

Nature Physics 7, 99 (2011)



Competing quantum effects in liquid water
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Competing quantum effects in liquid water
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Competing quantum effects in liquid water
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Gas phase chemical reaction rates

H+H,

QM
o RPMD
Classical

2 3 4
1000 K/ T

E(1)Q.(T) = /OOO Cre(t)dt

Symmetric barrier. Tc = 345 K
RPMD is out by -29% at 200 K.
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Gas phase chemical reaction rates

H+CHg4
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HT)QT) = [ )t

Asymmetric barrier. Tc = 296 K.
RPMD is out by +92% at 225 K.



The deep tunneling regime

F.T.

(etc.)

wia = 1/ (67/Bh)2 — w}

Y

Wiz =/ (dm/BR)? — w7

wir = 1/ (2m/BR)? — w7

Wo = 1Wp

Qualitative change in behaviour for

27T

> c — T
5 5 hwb
T<T, = ficoy
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Ring-polymer molecular dynamics rate-theory in the deep-tunneling
regime: Connection with semiclassical instanton theory

Jeremy O. Richardson and Stuart C. Althorpe
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 14 October 2009; accepted 4 November 2009; published online 3 December 2009)

We demonstrate that the ring-polymer molecular dynamics (RPMD) method is equivalent to an
automated and approximate implementation of the “Im F” version of semiclassical instanton theory
when used to calculate reaction rates in the deep-tunneling regime. This explains why the RPMD
method is often reliable in this regime and also shows how it can be systematically improved. The
geometry of the beads at the transition state on the ring-polymer potential surface describes a
finite-difference approximation to the “instanton™ trajectory (a periodic orbit in imaginary time Sh
on the inverted potential surface). The deep-tunneling RPMD rate is an approximation to the rate
obtained by applying classical transition-state theory (TST) in ring-polymer phase-space using the
optimal dividing surface; this TST rate is in turn an approximation to a free-energy version of the
Im F instanton rate. The optimal dividing surface is in general a function of several modes of the
ring polymer, which explains why centroid-based quantum-TSTs break down at low temperatures
for asymmetric reaction barriers. Numerical tests on one-dimensional models show that the RPMD
rate tends to overestimate deep-tunneling rates for asymmetric barriers and underestimate them for
symmetric barriers, and we explain that this is likely to be a general trend. The ability of the RPMD
method to give a dividing-surface-independent rate in the deep-tunneling regime is shown to be a
consequence of setting the bead-masses equal to the physical mass. © 2009 American Institute of
Physics. [doi:10.1063/1.3267318]
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Ring-polymer molecular dynamics rate-theory in the deep-tunneling
regime: Connection with semiclassical instanton theory

Jeremy O. Richardson and Stuart C. Althorpe
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“Dynamics and dissipation in enzyme catalysis™
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The Marcus inverted regime
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