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Background:

In standard (basis set) quantum mechanics
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In the position and momentum representations?
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the analogous results are

(qld") = 6(q —¢') (plp") = o(p —p')



Proof of the isomorphism:
Q = tr {e_mﬂ = tr Ke_ﬁnﬁ)n} where 3, = 8/n.
S

O
Q= / dgy . . / A (@] e |g2) .. {gul e |q1)

with
(qle P |q) == (g PV /2ePnT =BV /2| )

_ L[ gpeBart/2mtinta=a)/h-palV(@)/24V ()2
2mh
1/2
_ L (2mm T s me? (a-a)? 24V (0)/24V (0)/2)
2mh \ By
= L[ gy e Bl 2mime a=a)?/24V (0) /24 V(@) /2
2mh ’

gives Q with an error of O(n=2).



2. Path integral molecular dynamics*

PIMD uses the ring polymer trajectories

OH,(p, OH,(p,
g= +2n(Pa) __9Ha(p,q)
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as a sampling tool to calculate exact values of static
equilibrium properties such as
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Average potential energy
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for any bead 5 = 1,2,...,n, and we can improve the statistics by averaging over
the beads:
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where the potential energy estimator is
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for any bead j, and averaging over the beads to improve the statistics gives
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where the kinetic energy estimator is
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Thermodynamic energy estimator

An alternative approach is to note that the average value of the energy
E =T +V is given by statistical mechanics as
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Centroid virial estimator

So the thermodynamic energy estimator

1 1 n n

Erp(q) = 57— — 5= ) mwa(gy — gj41)° + % > Vi)

g=1 g=1

can be derived in two different ways, both of which show that its ring polymer
average (E1p(q)) will give the correct result (E) = tr [e_BH H } /Q for the av-

erage energy in the canonical ensemble.

But this is not the only estimator that will do so. The centroid virial energy
estimator®:Y
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Ecv(aq) = Vi(gs),

where ¢ = (1/n) Z? . ¢j, can be shown to have the same average (Ecv(q)) =
(é1p(q)) as the thermodynamic energy estimator, with a way smaller variance
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Comparison:
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Note that;

1. (F) is the same in both cases, and converges on the correct result with an
error of O(n~2).

2. (F) is converged to graphical accuracy by the time n ~ 5hv/kT = 58hw.

3. The standard deviation of the thermodynamic estimator increases asymp-

totically as n'/2.

4. If (E) were calculated using this estimator by Monte Carlo integration,
the required number of samples M would increase linearly with n (because
the standard error in the mean is proportional to oy /M/?).

5. By contrast, the standard deviation of the centroid virial estimator is
independent of n for large n.



3. Integrating the equations of motion’

The standard way to integrate classical trajectories in molecular dynamics
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is to use the velocity Verlet algorithm (e™ %0t ~ e~ £v0t/2g=Lrdt =Ly dt/2)
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For PIMD, one could write the ring polymer Hamiltonian as

p

H,(p,q) = o+ V(q)

with
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and use the standard velocity Verlet algorithm.

However, this would require a very small time step 0t because
of the stiff harmonic springs between the beads |w,, = n/(8h)].



So we prefer to write

where

and

and to use the following time evolution algorithm:

oLt~ =LV Ot/2 —Lobt ,—~Ly6t/2



Because it is harmonic,

can be diagonalised with a normal mode transformation
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Normal mode transformation

In fact

n
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where A is the adjacency matrix of the cyclic hydrocarbon C,H,, in Hiickel
theory. So the ring polymer normal mode transformation corresponds to doing
a simple HMO calculation:

Moreover
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is just a pair of discrete Fourier transforms, which can be done very efficiently
for large n using the FFT algorithm.



Ring polymer evolution

Bringing all of this together, the (microcanonical) ring polymer evolution
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Non-ergodicity

These microcanonical ring polymer trajectories are all very well, but they are
no good (on their own) for calculating thermal averages such as

_ 1 — By Hy (pa)

for two reasons:

1. They conserve H,(p,q). So they do not explore all (Boltzmann-weighted)
values of H,(p,q).

2. They are far from ergodic.® (E.g., for the SHO potential, V(q) = 2mw?q?,

2
H, (p,q) is diagonal in the normal mode representation; there is no energy
flow between the normal modes. And for a mildly anharmonic potential,
one would have to run a microcanonical trajectory for an awfully long

time to see any energy flow.)



The PILE thermostat
Both problems can be fixed by attaching a “path integral Langevin equation”
(PILE) thermostat to the dynamics. L.e., by replacing
6—£v5t/26—£05t€—ﬁx/5t/2
with
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in which the thermostatting (e ~%7°%/2) steps are implemented as follows:”
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Here & is an independent Gaussian number (a normal deviate with zero mean
and unit variance) that is different for each invocation of e %+9%/2,



The PILE algorithm corresponds to attaching a separate Langevin thermostat
to each internal mode of the free ring polymer,

i _h
dt & m

d ~ 9~ -~ Qm’}/k

_ — _ _ t
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where & (t) represents an uncorrelated, Gaussian-distributed random force with
unit variance and zero mean [(£x(t)) = 0 and (£, (0)&x(2)) = 6(¢)].



The autocorrelation time

1 o
V= e ) (VOO - W) e

of the free ring polymer normal mode potential V = mwz§; /2 can be worked
out analytically for this Langevin dynamics and is®

1 Vi
T 2w

for k > 0 [wr > 0]. The optimum friction coefficient v (which minimises 7/) is
therefore simply v+ = wy for k£ > 0, leaving a single physical parameter 75 to be
specified for thermostatting the centroid mode (k = 0):

{1/7’0, k:O,
Ve =

Wi k> 0.



4. Multidimensional generalisation

The above equations have been given for a simple one-dimensional problem with
A2
p
H="+4V
o T V).

However, in the absence of identical particle (fermionic and bosonic) exchange
effects, they are straightforward to generalise to a multidimensional Hamiltonian

of the form
N .
D;| .
Z ..,I'N>.

For example, the ring polymer Hamiltonian becomes

H,({p}, {r}) ZZ('p’”' L, - Pz‘j+1|2)+ZV(I‘1j7---,I’Nj)-

1=1 5=1




E.g., for N=2 particles and n=5 beads:

physical potential interactions

harmonic springs between beads



Identical particle exchange effects

Identical particle exchange effects become important when the de Broglie ther-
mal wavelengths A;(T) = h/v/27m;kT exceed the hard sphere diameters of the
atoms.

These effects can in principle be included by considering dimerisation, trimeri-
sation, etc. of ring polymers (see Chandler and Wolynes?).

However, it is hardly ever necessary for those of us who work in chemistry
departments to have to worry about them, because (e.g.) these effects are
negligible in liquid para-hydrogen even at its melting temperature (13.8 K).
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