Ring polymer molecular dynamics

David Manolopoulos Department of Chemistry, University of Oxford

Mariapfarr Workshop 2019, Lecture II

I. Quantum mechanical correlation functions

Many dynamical properties of condensed phase systems can be related to realtime correlation functions of the form

$$c_{AB}(t) = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t) \right],$$

where

$$Q = \operatorname{tr}\left[e^{-\beta \hat{H}}\right],$$

and

$$\hat{B}(t) = e^{+i\hat{H}t/\hbar}\hat{B}e^{-i\hat{H}t/\hbar}.$$

For example, the diffusion coefficient of a molecule i in a liquid is given by

$$D(T) = \frac{1}{3} \int_0^\infty c_{\mathbf{v}_i \cdot \mathbf{v}_i}(t) \, dt,$$

chemical reaction rate coefficients can be calculated from

$$k(T) = \frac{1}{Q_r(T)} \int_0^\infty c_{ff}(t) \, dt,$$

and dipole absorption spectra from

$$n(\omega)\alpha(\omega) = \frac{\pi\omega}{3\hbar c V \epsilon_0} (1 - e^{-\beta\hbar\omega}) C_{\mu\cdot\mu}(\omega),$$

where

$$C_{\mu \cdot \mu}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{\mu \cdot \mu}(t) dt.$$

The standard real-time correlation function is

$$c_{AB}(t) = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t) \right],$$

whereas the *Kubo-transformed* correlation function is^1

$$\tilde{c}_{AB}(t) = \frac{1}{\beta Q} \int_0^\beta d\lambda \operatorname{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{A}(0) e^{-\lambda \hat{H}} \hat{B}(t) \right].$$

There are a number of reasons why $\tilde{c}_{AB}(t)$ is the more "classical" of the two objects – and it is $\tilde{c}_{AB}(t)$ that is approximated in RPMD.

If

$$C_{AB}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{AB}(t) dt$$

and

$$\tilde{C}_{AB}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \tilde{c}_{AB}(t) dt,$$

then it is straightforward to show that

$$C_{AB}(\omega) = D(\omega)\tilde{C}_{AB}(\omega),$$

where

$$D(\omega) = \frac{\beta \hbar \omega}{1 - e^{-\beta \hbar \omega}}.$$

So standard correlation functions can easily be reconstructed from Kubo-transformed correlation functions, and vive versa.

Proof (I):

$$c_{AB}(t) = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A}(0) \hat{B}(t) \right]$$

$$= \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A} e^{+i\hat{H}t/\hbar} \hat{B} e^{-i\hat{H}t/\hbar} \right]$$

$$= \frac{1}{Q} \sum_{jk} e^{-\beta E_j} \langle j | \hat{A} | k \rangle e^{+iE_k t/\hbar} \langle k | \hat{B} | j \rangle e^{-iE_j t/\hbar}$$

$$= \frac{1}{Q} \sum_{jk} e^{-\beta E_j} A_{jk} B_{kj} e^{+i(E_k - E_j)t/\hbar}.$$

$$\therefore \quad C_{AB}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{AB}(t) dt$$
$$= \frac{1}{Q} \sum_{jk} e^{-\beta E_j} A_{jk} B_{kj} \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(\omega - [E_k - E_j]/\hbar)t} dt$$
$$= \frac{1}{Q} \sum_{jk} e^{-\beta E_j} A_{jk} B_{kj} \delta(\omega - [E_k - E_j]/\hbar).$$

Proof (II):

$$\tilde{c}_{AB}(t) = \frac{1}{\beta Q} \int_0^\beta d\lambda \operatorname{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{A} e^{-\lambda \hat{H}} e^{+i\hat{H}t/\hbar} \hat{B} e^{-i\hat{H}t/\hbar} \right]$$
$$= \frac{1}{\beta Q} \int_0^\beta d\lambda \sum_{jk} e^{-\beta E_j} A_{jk} B_{kj} e^{-\lambda (E_k - E_j)} e^{+i(E_k - E_j)t/\hbar}.$$

$$\therefore \quad \tilde{C}_{AB}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \tilde{c}_{AB}(t) dt = \frac{1}{\beta Q} \int_{0}^{\beta} d\lambda \sum_{jk} e^{-\beta E_{j}} A_{jk} B_{kj} e^{-\lambda(E_{k} - E_{j})} \delta(\omega - [E_{k} - E_{j}]/\hbar) = \frac{1}{\beta} \int_{0}^{\beta} e^{-\lambda\hbar\omega} d\lambda \cdot \frac{1}{Q} \sum_{jk} e^{-\beta E_{j}} A_{jk} B_{kj} \delta(\omega - [E_{k} - E_{j}]/\hbar) = \frac{(1 - e^{-\beta\hbar\omega})}{\beta\hbar\omega} \cdot C_{AB}(\omega).$$

Alternatively (I):

Note that

$$\begin{split} \tilde{c}_{AB}(t) &= \frac{1}{\beta Q} \int_{0}^{\beta} d\lambda \operatorname{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{A} \, e^{-\lambda \hat{H}} e^{+i\hat{H}t/\hbar} \hat{B} \, e^{-i\hat{H}t/\hbar} \right] \\ &= \frac{1}{\beta Q} \int_{0}^{\beta} d\lambda \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A} \, e^{+i\hat{H}(t+i\lambda\hbar)/\hbar} \hat{B} \, e^{-i\hat{H}(t+i\lambda\hbar)/\hbar} \right] \\ &\equiv \frac{1}{\beta} \int_{0}^{\beta} d\lambda \, c_{AB}(t+i\lambda\hbar), \end{split}$$

where

$$c_{AB}(\tau) = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A} \, e^{+i\hat{H}\tau/\hbar} \hat{B} \, e^{-i\hat{H}\tau/\hbar} \right]$$

is an analytic function of τ in the strip $0 \leq \text{Im}(\tau) \leq \beta \hbar$:

Alternatively (II):

$$\begin{split} \tilde{C}_{AB}(\omega) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \tilde{c}_{AB}(t) dt \\ &= \frac{1}{\beta} \int_{0}^{\beta} d\lambda \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} c_{AB}(t+i\lambda\hbar) dt \\ &= \frac{1}{\beta} \int_{0}^{\beta} e^{-\lambda\omega\hbar} d\lambda \frac{1}{2\pi} \int_{-\infty+i\lambda\hbar}^{+\infty+i\lambda\hbar} e^{-i\omega\tau} c_{AB}(\tau) d\tau \\ &= \frac{1}{\beta} \int_{0}^{\beta} e^{-\lambda\omega\hbar} d\lambda \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-i\omega\tau} c_{AB}(\tau) d\tau \\ &= \frac{(1-e^{-\beta\hbar\omega})}{\beta\hbar\omega} \cdot C_{AB}(\omega). \end{split}$$

So

It follows from this that dynamical observables can equally well be written in terms of $\tilde{c}_{AB}(t)$.

For example:

$$D(T) = \frac{1}{3} \int_0^\infty \tilde{c}_{\mathbf{v}_i \cdot \mathbf{v}_i}(t) dt,$$
$$k(T) = \frac{1}{Q_r(T)} \int_0^\infty \tilde{c}_{ff}(t) dt,$$

and

$$n(\omega)\alpha(\omega) = \frac{\pi\beta\omega^2}{3cV\epsilon_0}\tilde{C}_{\mu\cdot\mu}(\omega),$$

where

$$\tilde{C}_{\mu \cdot \mu}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \tilde{c}_{\mu \cdot \mu}(t) dt.$$

Notice that none of these equations involves $\hbar!$

2. Ring polymer molecular dynamics²

$$H_n(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^n \left[\frac{p_j^2}{2m} + \frac{1}{2} m \omega_n^2 (q_j - q_{j+1})^2 + V(q_j) \right]; \quad \beta_n = \beta/n; \quad \omega_n = 1/(\beta_n \hbar).$$

Path integral molecular dynamics:

PIMD uses the ring polymer trajectories

$$\dot{\mathbf{q}} = + \frac{\partial H_n(\mathbf{p}, \mathbf{q})}{\partial \mathbf{p}} \quad \dot{\mathbf{p}} = - \frac{\partial H_n(\mathbf{p}, \mathbf{q})}{\partial \mathbf{q}}$$

as a sampling tool to calculate *exact* values of static equilibrium properties such as

$$\langle A \rangle = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{A} \right].$$

Ring polymer molecular dynamics:

RPMD uses the same trajectories to *approximate* Kubotransformed time correlation functions of the form

$$\tilde{c}_{AB}(t) = \frac{1}{\beta Q} \int_0^\beta d\lambda \, \mathrm{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{A}(0) e^{-\lambda \hat{H}} \hat{B}(t) \right],$$

where

$$\hat{B}(t) = e^{+i\hat{H}t/\hbar}\hat{B} e^{-i\hat{H}t/\hbar}.$$

Ring polymer molecular dynamics:

The RPMD approximation to

$$\tilde{c}_{AB}(t) = \frac{1}{\beta Q} \int_0^\beta d\lambda \, \mathrm{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{A}(0) e^{-\lambda \hat{H}} \hat{B}(t) \right]$$

is simply

$$\tilde{c}_{AB}(t) \simeq \frac{1}{(2\pi\hbar)^n Q} \int d\mathbf{p}_0 \int d\mathbf{q}_0 \ e^{-\beta_n H_n(\mathbf{p}_0, \mathbf{q}_0)} A_n(\mathbf{q}_0) B_n(\mathbf{q}_t),$$

where

$$A_n(\mathbf{q}) = \frac{1}{n} \sum_{j=1}^n A(q_j)$$
 and $B_n(\mathbf{q}) = \frac{1}{n} \sum_{j=1}^n B(q_j).$

Classical molecular dynamics in an extended phase space!

In short, the RPMD approximation includes both:

But it neglects QM interference effects in the real-time dynamics.

One can show that RPMD is:

- 1. Exact in the high temperature limit
- 2. Exact in the short time $limit^3$
- 3. Exact in the harmonic limit (for linear \hat{A} or \hat{B})²
- 4. Exact for $\hat{A} = \hat{1}$ (the unit operator)
- 5. Faithful to all QM symmetries 2
- 6. Consistent with the QM equilibrium distribution

E.g.: when $\hat{A} = \hat{1}$ we have

$$\begin{split} \tilde{c}_{1B}(t) &= \frac{1}{\beta Q} \int_{0}^{\beta} d\lambda \operatorname{tr} \left[e^{-(\beta - \lambda)\hat{H}} \hat{1} e^{-\lambda \hat{H}} \hat{B}(t) \right] \\ &= \frac{1}{\beta Q} \int_{0}^{\beta} d\lambda \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{B}(t) \right] \\ &= \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{B}(t) \right] \\ &= \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} e^{+i\hat{H}t/\hbar} \hat{B} e^{-i\hat{H}t/\hbar} \right] \\ &= \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{B} \right] \\ &= \frac{1}{Q} \operatorname{tr} \left[e^{-\beta \hat{H}} \hat{B} \right] \\ &\equiv \langle B \rangle \,, \end{split}$$

And in RPMD we also have

$$\begin{split} \tilde{c}_{1B}(t) &= \frac{1}{(2\pi\hbar)^n Q} \int d\mathbf{p}_0 \int d\mathbf{q}_0 \, e^{-\beta_n H_n(\mathbf{p}_0, \mathbf{q}_0)} B_n(\mathbf{q}_t) \\ &= \frac{1}{(2\pi\hbar)^n Q} \int d\mathbf{p}_t \int d\mathbf{q}_t \, e^{-\beta_n H_n(\mathbf{p}_0, \mathbf{q}_0)} B_n(\mathbf{q}_t) \\ &= \frac{1}{(2\pi\hbar)^n Q} \int d\mathbf{p}_t \int d\mathbf{q}_t \, e^{-\beta_n H_n(\mathbf{p}_t, \mathbf{q}_t)} B_n(\mathbf{q}_t) \\ &= \frac{1}{(2\pi\hbar)^n Q} \int d\mathbf{p}_0 \int d\mathbf{q}_0 \, e^{-\beta_n H_n(\mathbf{p}_0, \mathbf{q}_0)} B_n(\mathbf{q}_0) \\ &\equiv \langle B \rangle \,, \end{split}$$

where we have used Liouville's theorem $(d\mathbf{p}_0 d\mathbf{q}_0 = d\mathbf{p}_t d\mathbf{q}_t)$ and the fact that RPMD trajectories conserve $H_n(\mathbf{p}_t, \mathbf{q}_t)$.

Non-local operators

So far, we have only considered local operators $\hat{A} = A(\hat{q})$ and $\hat{B} = B(\hat{q})$. But

$$\begin{split} \frac{d^2}{dt^2} Q \, c_{qq}(t) &= \frac{d^2}{dt^2} \mathrm{tr} \left[e^{-\beta \hat{H}} \hat{q} \, e^{+i\hat{H}t/\hbar} \hat{q} \, e^{-i\hat{H}t/\hbar} \right] \\ &= \frac{d}{dt} \mathrm{tr} \left[e^{-\beta \hat{H}} \hat{q} \, e^{+i\hat{H}t/\hbar} \frac{i}{\hbar} [\hat{H}, \hat{q}] e^{-i\hat{H}t/\hbar} \right] \\ &= \frac{d}{dt} \mathrm{tr} \left[e^{-\beta \hat{H}} \hat{q} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \\ &= \frac{d}{dt} \mathrm{tr} \left[e^{-\beta \hat{H}} e^{-i\hat{H}t/\hbar} \hat{q} \, e^{+i\hat{H}t/\hbar} \hat{v} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} e^{-i\hat{H}t/\hbar} \frac{i}{\hbar} [\hat{H}, \hat{q}] \, e^{+i\hat{H}t/\hbar} \hat{v} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} e^{-i\hat{H}t/\hbar} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} e^{-i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \hat{v} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \\ &= -\mathrm{tr} \left[e^{-\beta \hat{H}} \hat{v} \, e^{+i\hat{H}t/\hbar} \hat{v} \, e^{-i\hat{H}t/\hbar} \right] \end{aligned}$$

So
$$c_{vv}(t) = -\frac{d^2}{dt^2}c_{qq}(t)$$
 and (similarly) $\tilde{c}_{vv}(t) = -\frac{d^2}{dt^2}\tilde{c}_{qq}(t)$.

Thus the velocity autocorrelation function can be calculated in RPMD as $\tilde{c}_{vv}(t) = -\frac{d^2}{dt^2}\tilde{c}_{qq}(t)$, which gives (entirely naturally!)

$$(2\pi\hbar)^{n}Q c_{vv}(t) = -\frac{d^{2}}{dt^{2}} \int d\mathbf{p}_{0} \int d\mathbf{q}_{0} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{q}_{0}\bar{q}_{t}$$

$$= -\frac{d}{dt} \int d\mathbf{p}_{0} \int d\mathbf{q}_{0} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{q}_{0}\bar{v}_{t}$$

$$= -\frac{d}{dt} \int d\mathbf{p}_{t} \int d\mathbf{q}_{t} e^{-\beta_{n}H_{n}(\mathbf{p}_{t},\mathbf{q}_{t})} \bar{q}_{0}\bar{v}_{t}$$

$$= -\frac{d}{dt} \int d\mathbf{p}_{0} \int d\mathbf{q}_{0} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{q}_{-t}\bar{v}_{0}$$

$$= \int d\mathbf{p}_{0} \int d\mathbf{q}_{0} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{v}_{-t}\bar{v}_{0}$$

$$= \int d\mathbf{p}_{t} \int d\mathbf{q}_{t} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{v}_{0}\bar{v}_{t}$$

$$= \int d\mathbf{p}_{0} \int d\mathbf{q}_{0} e^{-\beta_{n}H_{n}(\mathbf{p}_{0},\mathbf{q}_{0})} \bar{v}_{0}\bar{v}_{t}.$$

That is, $\tilde{c}_{vv}(t) = \langle \bar{v}_0 \bar{v}_t \rangle$, where $\bar{q} = \frac{1}{n} \sum_{j=1}^n q_j$ and $\bar{v} = \frac{d}{dt} \bar{q} = \frac{1}{n} \sum_{j=1}^n \frac{p_j}{m}$.

The same argument applies to correlation functions involving other non-local operators.

For example, chemical reaction rate coefficients can be calculated from

$$Q_r(T)k(T) = \int_0^\infty \tilde{c}_{ff}(t) \, dt = \lim_{t \to \infty} \tilde{c}_{fs}(t) = -\lim_{t \to \infty} \frac{d}{dt} \tilde{c}_{fs}(t),$$

where

$$\tilde{c}_{ff}(t) = \frac{d}{dt}\tilde{c}_{fs}(t) = -\frac{d^2}{dt^2}\tilde{c}_{ss}(t),$$

both in QM and in RPMD.

But I shall not discuss this any further here, as it is the subject of Lecture III.

3. Example applications

A. Quantum diffusion in liquid para-hydrogen⁴

Consistency check:

Recall that
$$C_{vv}(\omega) = \frac{\beta\hbar\omega}{1 - e^{-\beta\hbar\omega}} \tilde{C}_{vv}(\omega)$$
. So (in 1d notation)
 $\langle T \rangle = \frac{1}{Q} \operatorname{tr} \left[e^{-\beta\hat{H}} \hat{T} \right] = \frac{m}{2} \frac{1}{Q} \operatorname{tr} \left[e^{-\beta\hat{H}} \hat{v} \hat{v} \right]$
 $= \frac{m}{2} c_{vv}(0) = \frac{m}{2} \int_{-\infty}^{\infty} d\omega C_{vv}(\omega)$
 $= \frac{m}{2} \int_{-\infty}^{\infty} d\omega \frac{\beta\hbar\omega}{1 - e^{-\beta\hbar\omega}} \tilde{C}_{vv}(\omega)$
 $= \frac{m}{4\pi} \int_{-\infty}^{\infty} d\omega \int_{-\infty}^{\infty} dt \frac{\beta\hbar\omega}{1 - e^{-\beta\hbar\omega}} e^{-i\omega t} \tilde{c}_{vv}(t)$
 $= \frac{m}{2} \left[\tilde{c}_{vv}(0) + \int_{0}^{\infty} dt \frac{2}{1 - e^{+2\pi t/\beta\hbar}} \frac{d\tilde{c}_{vv}(t)}{dt} \right],$

in which the last line is obtained by evaluating the integral over ω .⁵

By comparing this with the exact $\langle T \rangle = \langle \mathcal{T}_{CV}(\mathbf{q}) \rangle$, one has a way to check the accuracy of the RPMD approximation to $\tilde{c}_{vv}(t)$.

For the 25 K liquid para-hydrogen example given above, this consistency check gives the following kinetic energies per atom (in 3d):⁴

	Kinetic energy (K)	
Exact	RPMD	Classical
62.0	64.5	37.5

Not bad – the RPMD approximation to $\tilde{c}_{vv}(t)$ overestimates the quantum contribution to the kinetic energy by less than 10%. But not perfect – RPMD is just an approximation to real-time quantum dynamics, after all!

This is actually quite a stringent test, because the thermal time $\beta\hbar$ at 25 K is ~ 0.3 ps, which is comparable to the decay time of the p-H₂ velocity autocorrelation function. So it provides some reason to have faith in RPMD for other (less quantum mechanical) problems:

B. Competing quantum effects in liquid water⁶

C. The vibrational spectrum of liquid water⁷

D. Thermostatted RPMD⁸

None of the established properties of RPMD is affected when a PILE thermostat is attached to the internal modes of the ring polymer during the dynamics (TRPMD), which seems to be a good idea for calculating vibrational spectra:

Vibrational spectra of an anharmonic OH molecule $(2\omega_e x_e = 170 \text{ cm}^{-1})$.

4. References

- 1. R. Kubo, J. Phys. Soc. Japan **12**, 570 (1957).
- 2. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. **121**, 3368 (2004).
- 3. B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. **125**, 124105 (2006).
- 4. T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. **122**, 184503 (2005).
- 5. B. J. Braams, T. F. Miller III and D. E. Manolopoulos, Chem. Phys. Lett. **418**, 179 (2006).
- S. Habershon, T. E. Markland and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
- S. Habershon, G. S. Fanourgakis and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
- 8. M. Rossi, M. Ceriotti and D. E. Manolopoulos, J. Chem. Phys. **140**, 234116 (2014).
- And finally, for a review of RPMD that was current in 2013, see:
 S. Habershon, D. E. Manolopoulos, T. E. Markland and T. F. Miller III, Ann. Rev. Phys. Chem. 64, 387 (2013).

Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space

Scott Habershon,¹ David E. Manolopoulos,² Thomas E. Markland,³ and Thomas F. Miller III⁴

¹Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; email: S.Habershon@warwick.ac.uk

²Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom; email: david.manolopoulos@chem.ox.ac.uk

³Department of Chemistry, Stanford University, Stanford, California 94305; email: tmarkland@stanford.edu

⁴Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; email: tfm@caltech.edu

Annu. Rev. Phys. Chem. 2013. 64:387-413

First published online as a Review in Advance on January 7, 2013

The Annual Review of Physical Chemistry is online at physchem.annualreviews.org

This article's doi: 10.1146/annurev-physchem-040412-110122

Copyright © 2013 by Annual Reviews. All rights reserved

Keywords

quantum dynamics, path integral, tunneling, zero-point energy, time-correlation function, semiclassical theory

Abstract

This article reviews the ring-polymer molecular dynamics model for condensed-phase quantum dynamics. This model, which involves classical evolution in an extended ring-polymer phase space, provides a practical approach to approximating the effects of quantum fluctuations on the dynamics of condensed-phase systems. The review covers the theory, implementation, applications, and limitations of the approximation.