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|. Quantum mechanical correlation functions

Many dynamical properties of condensed phase systems can be related to real-
time correlation functions of the form

cap(t) = %tr {e_BﬁA(O)E(t)} :

where

and



For example, the diffusion coefficient of a molecule ¢ in a liquid is given by

1

D(T) = 3 /OOO Cv..v, (1) dt,

chemical reaction rate coeflicients can be calculated from

k(T) = erm /OOO ¢ p(t) dt,

and dipole absorption spectra from

where



The standard real-time correlation function is

cap(t) = étr T AO0)B)]

whereas the Kubo-transformed correlation function is!

B . .
Eap(t) = % /O d\ tr [e—w—A)HA(())e—AHB(t)].

There are a number of reasons why ¢ap(t) is the more “classical” of the two
objects — and it is ¢4p(t) that is approximated in RPMD.
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Cap(w) / e "“'eap(t)dt,
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then it is straightforward to show that

Cap(w) = D(w)Cap(w),

where

B hw
D(w) = T

So standard correlation functions can easily be reconstructed from Kubo-transformed
correlation functions, and vive versa.



Proof (1):
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Proof (ll):
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Alternatively (1):
Note that
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So

Alternatively (l1):
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It follows from this that dynamical observables can
equally well be written in terms of ¢4p(?).

For example:

1 O
D(T) =, / u (8)
1 o0
k(T) = QT(T)/O ép(t) dt,
and ,
n()aw) = 25 Clw),
where

Notice that none of these equations involves A!



2. Ring polymer molecular dynamics?

Recall that:

Aq = AT)/V8r
A(T) = h/V2rmkT

Ap = VmkT

h

PY > = ApAq = 5
Q = tr [G_BH}
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Path integral molecular dynamics:

PIMD uses the ring polymer trajectories

, 0H,,(p, , 0H, (p,
q= (p,q) b= (p,q)
op Jq

as a sampling tool to calculate exact values of static
equilibrium properties such as

4) = g [#4].

Ring polymer molecular dynamics:

RPMD uses the same trajectories to approrimate Kubo-
transformed time correlation functions of the form

cap(t) = 5@/ d\ tr e~ (B ’\)HA( O)e _’\HB( )}

where R .
B(t) _ e—l—th/hB €_th/h.



Ring polymer molecular dynamics:

The RPMD approximation to

: S
Eap(l) = % /0 ax tr e~ G-V A(0)e M B(r)]

is simply
N 1 _
cap(t) ~ )0 /dpo/dqo e~ Ontn(Po,d0) A (q0) B, (qy),
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Classical molecular dynamics in an extended phase space!



In short, the RPMD approximation includes both:

tunneling and zero point energy
’ ’. " ~
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But it neglects QM interference effects in the real-time dynamics.



One can show that RPMD is:

1. Exact in the high temperature limit

2. Exact in the short time limit?

3. Exact in the harmonic limit (for linear A or B)?
4. Exact for A =1 (the unit operator)

5. Faithful to all QM symmetries ?

6. Consistent with the QM equilibrium distribution



E.g.: when A =1 we have
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And in RPMD we also have

8 1 _
cip(t) = CORe /dPO/que Ban(po,qo)Bn(qt>
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where we have used Liouville’s theorem (dpodqg = dp:dq;) and the fact that
RPMD trajectories conserve H,,(p+, q:)-



Non-local operators

So far, we have only considered local operators A = A(§) and B = B(§). But
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Thus the velocity autocorrelation function can be calculated in RPMD as ¢, (t)

d2
_@@q(t), which gives (entirely naturally!)
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The same argument applies to correlation functions involving other non-local
operators.

For example, chemical reaction rate coeflicients can be calculated from

QT(T)k(T> = AOO 6ff(t) dt = lim 5f8(t) = — lim iéfs(t),

t— 00 t—oo dt

where

Eff(t) = Eéfs(t) = —ﬁéss(?ﬁ),

both in QM and in RPMD.

But I shall not discuss this any further here, as it is the subject of Lecture III.



3. Example applications

A. Quantum diffusion in liquid para-hydrogen*
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Consistency check:

Phw =

Recall that C,,(w) = T Cyy(w). So (in 1d notation)
— e w
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in which the last line is obtained by evaluating the integral over w.?

By comparing this with the exact (T)) = (Tcv(q)), one has a way to
check the accuracy of the RPMD approximation to ¢, (t).



For the 25 K liquid para-hydrogen example given above, this consistency check
gives the following kinetic energies per atom (in 3d):*

Kinetic energy (K)
Exact RPMD Classical
62.0 64.5 37.5

Not bad — the RPMD approximation to ¢,,(t) overestimates the quantum con-
tribution to the kinetic energy by less than 10%. But not perfect — RPMD is
just an approximation to real-time quantum dynamics, after all!

This is actually quite a stringent test, because the thermal time Sh at 25 K is
~ 0.3 ps, which is comparable to the decay time of the p-Hs velocity autocor-
relation function. So it provides some reason to have faith in RPMD for other
(less quantum mechanical) problems:



B. Competing quantum effects in liquid water®
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C. The vibrational spectrum of liquid water’

— RPMD (300 K)
--- RPMD (350 K)

2000
-1
w/cm

1000 T

3000

Spurious
resonances!

w1 = (2n/Bh) sin(mw/n) ~ (27 /Bh) = 1300 cm™! at 300 K.



D. Thermostatted RPMD8

None of the established properties of RPMD is affected when a PILE thermostat
is attached to the internal modes of the ring polymer during the dynamics
(TRPMD), which seems to be a good idea for calculating vibrational spectra:

Curvature
problem
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Vibrational spectra of an anharmonic OH molecule (2wez, = 170 cm™1).
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Abstract

This article reviews the ring-polymer molecular dynamics model for
condensed-phase quantum dynamics. This model, which involves classical
evolution in an extended ring-polymer phase space, provides a practical ap-
proach to approximating the effects of quantum fluctuations on the dynamics
of condensed-phase systems. The review covers the theory, implementation,
applications, and limitations of the approximation.



