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1.  A killer application

tunneling and zero point energy

Recall that RPMD includes both
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which are the dominant quantum mechanical e↵ects in chemical reaction rates!
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2. Ring polymer rate theory

qq‡

V (q)

Flux                          Side

NB:

1. k(T ) is independent of q‡.

2. c̃fs(t ! 0+) ⇠ t1/2 ! 0.
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Consider a simple 1d barrier transmission problem:

The exact QM rate coe�cient is1,2
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i
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The classical limit:

qq‡

V (q)

The classical limit rate coe�cient is

kcl(T ) =
1

Qr(T )
lim
t!1

c cl
fs
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where

c̃fs(t) =
1

2⇡~
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dp0

Z
dq0 e
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⇥ �(q0 � q‡)
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m

⇥ h(qt � q‡).

NB:

1. kcl(T ) is independent of q‡.

2. As t ! 0+, h(qt � q‡) ! h(p0), giving

kTST(T ) =
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Qr(T )
c cl
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(t ! 0+) =
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<latexit sha1_base64="PN6XgZFYmj0THjQC2N9TLSGi2y8="></latexit>

} }
Flux (t = 0)     Side (t > 0)



No TST limit

Quantum Classical

CL rate

QM rate
TST limit

c̃fs(t)/Qr(T )
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“Quantum transition state theory”
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The centroid density QTST rate is
3,4

kQTST
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where
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n
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NB:

1. e��V (q‡) ! Q(q‡)/Qr(T ) includes (some) tunneling

2. However, kQTST
(T ) is exponentially sensitive to q‡
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(good).

(bad).



Ring polymer rate theory:
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The RPMD rate coe�cient is5,6
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NB: With these definitions,

kQTST(T ) =
1

Qr(T )
c̄fs(t ! 0+).

So kRPMD(T ) is to kQTST(T ) what kcl(T ) is to kTST(T )!
<latexit sha1_base64="yJoeSHHDSLssjQVL4XNXgjko2Jc="></latexit>



The RPMD rate is: 

1. Full dimensional

2. Parameter free

3. Simple to compute

4. Exact in the high temperature limit

5. Exact for a parabolic barrier

6. Independent of the choice of dividing surface

7. Consistent with the QM equilibrium constant

…and it has one further highly desirable feature:



Symmetric barrier.  Tc = 345 K.

RPMD is out by −21% at 200 K.
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3. Gas phase examples7,8
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Cl+HCl

Symmetric barrier.  Tc = 320 K.

RPMD is out by −64% at 200 K.
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F+H2

Asymmetric barrier.  Tc = 264 K.

RPMD is out by +46% at 200 K.
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Asymmetric barrier.  Tc = 296 K.

RPMD is out by +92% at 225 K.

H+CH4



...
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The deep tunneling regime9

Qualitative change in behaviour for

� > �c =
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T < Tc =
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2⇡kB
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Mu+H2 ! MuH+H
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Asymmetric barrier.  ZPE dominated.

RPMD is out by just +5% at 200 K.

So RPMD is pretty good at tunneling. 
But what about zero-point energy?

Perez de Tudela et al. (2012)10



 The reactions studied with this software so far include:   

     Triatomic activated          H+H2,  F+H2,  Cl+HCl 
     Triatomic insertion           C(1D)+H2,  S(1D)+H2 
     Tetratomic                       Cl+O3,  HCl+OH
     Pentatomic                      F+NH3   
     Hexatomic                       H+CH4,  Cl+CH4,  O+CH4 
     Heptatomic                      OH+CH4
     Enneatomic                     H+C2H6

                  (etc. — this list is already out of date!)



4. Condensed phase examples

A.  A system-bath model 5

This model consists of a quartic double well coupled to a
bath of harmonic oscillators:
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with
V (q̂1) = �a2q̂

2
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4
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and

J(!) = ⌘!e
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2

fX
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c
2
i

m!i
�(! � !i).

Parameters chosen to model a proton transfer reaction in
solution.
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was not chosen to represent a particular experimental system.

Moreover, an exact fully quantum calculation is not compu-

tationally feasible for this large system. Thus, we focus on a

comparison between 1D and 2D MDQT to elucidate the fun-

damental issues arising from a quantum mechanical treat-

ment of the donor–acceptor vibrational motion as well as the

hydrogen motion. The general physical principles will be

applicable to a wide range of proton transfer systems.

II. METHODS

A. Fundamental aspects of mixed quantumÕclassical
methods

In mixed quantum/classical !Q/C" methods,20,21 the sys-
tem is divided into a classical subsystem with coordinates

Rclass and a quantum subsystem with coordinates Rquant . The

quantum mechanical Hamiltonian Hquant is a sum of the ki-

netic energy of the quantum subsystem and the total potential

energy, which depends on Rclass and Rquant . The adiabatic

states #n(Rquant ;Rclass) are calculated at each classical mo-

lecular dynamics time step by solving the time-independent

Schrödinger equation,

Hquant#n!Rquant ;Rclass"!$n!Rclass"#n!Rquant ;Rclass".
!1"

In the adiabatic approach, the classical coordinates move on

a single adiabatic potential energy surface $k(Rclass), where
k represents the occupied adiabatic state. The Hellmann–

Feynman forces,

F
Rclass

HF !"%#k!&RclassHquant!#k' !2"

are used to numerically integrate the classical equations of

motion. !Here the angular brackets indicate integration over
all quantum coordinates."

The molecular dynamics with quantum transitions

!MDQT" method19,29 incorporates nonadiabatic effects. The
fundamental principle of MDQT is that an ensemble of tra-

jectories is propagated, and each trajectory moves classically

on a single adiabatic surface except for instantaneous transi-

tions among the adiabatic states. The classical subsystem

evolves according to the adiabatic potential $k(Rclass) with
forces F

Rclass

HF , where k denotes the occupied state. The time-

dependent wave function describing the quantum nuclei is

expanded in a basis of the adiabatic states,

(!Rquant ,Rclass ,t "!)
j
C j! t "# j!Rquant ;Rclass". !3"

The quantum amplitudes Cj(t) are calculated by integrating

the time-dependent Schrödinger equation simultaneously

with the classical equations of motion. Substituting Eq. !3"
into the time-dependent Schrödinger equation leads to

i*Ċn!)
j
C j!Vnj"i*Ṙclass•dn j", !4"

where

Vnj+%#n!Hquant!# j', !5"

dn j+%#n!&Rclass# j'. !6"

At each time step, Tully’s ‘‘fewest switches’’ algorithm29 is

invoked to determine if a quantum transition to another adia-

batic state should occur. This algorithm correctly apportions

trajectories among the adiabatic states according to the quan-

tum probabilities !Cj(t)!2 with the minimum required num-

ber of quantum transitions !neglecting difficulties with clas-
sically forbidden transitions". According to Eq. !4", the
quantum amplitudes change most rapidly in the region of

large nonadiabatic coupling Ṙclass•dn j . As a result, the nona-
diabatic transitions occur most frequently in this coupling

region. The MDQT method has been shown to agree with

fully quantum dynamical calculations for simple model pro-

ton transfer systems.37–39

B. Mixed quantumÕclassical dynamics
with two quantum coordinates

In this section, we present the methodology for treating

both the transferring hydrogen and the donor–acceptor vibra-

tional motions quantum mechanically in mixed Q/C molecu-

lar dynamics simulations involving proton transfer within a

linear AHB complex embedded in solvent. The solvent coor-

dinates are represented as RS . The linear complex may be

described in terms of the coordinates RA , RB , and RH cor-

responding to the positions of A, B, and H, respectively,

where H is constrained to be on the AB axis. Alternatively,

the linear complex may be described in terms of the center of

mass Rcm , the polar coordinates !,,-" representing the ori-
entation, and the scalar distances r!!RA"RH! and R!!RB
"RA!. The masses of A, B, and H are represented by mA ,

mB , and mH , respectively, and the total mass is M!mA

#mB#mH .

Within this framework, the total Hamiltonian is36

H!Tsolv!PS"#
Pcm
2

2M
#
1

2I
" P,

2#
P-
2

sin2 , #
#
1

2
!Pr ,PR"!"1" Pr

PR
##V!r ,R ,Rcm ,, ,- ,RS", !7"

where the first four terms correspond to the kinetic energies

of the solvent, the center of mass of the complex, the angles

representing the orientation of the complex, and the scalar

coordinates r and R . The last term represents the potential

energy of the system. The effective mass matrix and its in-

verse are36

FIG. 1. Schematic picture of the intramolecular proton transfer reaction in

liquid methyl chloride. The filled circles indicate the positive ends and the

open circles indicate the negative ends of the solvent dipoles. The equilib-

rium solvent configurations are qualitatively different for the reactant and

product solute complexes. The dipolar solvent is randomly oriented around

the covalent reactant but is oriented in a manner to stabilize the ionic prod-

uct via electrostatic interactions.

4390 J. Chem. Phys., Vol. 119, No. 8, 22 August 2003 S. Y. Kim and S. Hammes-Schiffer

Downloaded 06 Sep 2006 to 129.67.106.60. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

was not chosen to represent a particular experimental system.

Moreover, an exact fully quantum calculation is not compu-

tationally feasible for this large system. Thus, we focus on a

comparison between 1D and 2D MDQT to elucidate the fun-

damental issues arising from a quantum mechanical treat-

ment of the donor–acceptor vibrational motion as well as the

hydrogen motion. The general physical principles will be

applicable to a wide range of proton transfer systems.

II. METHODS

A. Fundamental aspects of mixed quantumÕclassical
methods

In mixed quantum/classical !Q/C" methods,20,21 the sys-
tem is divided into a classical subsystem with coordinates

Rclass and a quantum subsystem with coordinates Rquant . The

quantum mechanical Hamiltonian Hquant is a sum of the ki-

netic energy of the quantum subsystem and the total potential

energy, which depends on Rclass and Rquant . The adiabatic

states #n(Rquant ;Rclass) are calculated at each classical mo-

lecular dynamics time step by solving the time-independent

Schrödinger equation,

Hquant#n!Rquant ;Rclass"!$n!Rclass"#n!Rquant ;Rclass".
!1"

In the adiabatic approach, the classical coordinates move on

a single adiabatic potential energy surface $k(Rclass), where
k represents the occupied adiabatic state. The Hellmann–

Feynman forces,

F
Rclass

HF !"%#k!&RclassHquant!#k' !2"

are used to numerically integrate the classical equations of

motion. !Here the angular brackets indicate integration over
all quantum coordinates."

The molecular dynamics with quantum transitions

!MDQT" method19,29 incorporates nonadiabatic effects. The
fundamental principle of MDQT is that an ensemble of tra-

jectories is propagated, and each trajectory moves classically

on a single adiabatic surface except for instantaneous transi-

tions among the adiabatic states. The classical subsystem

evolves according to the adiabatic potential $k(Rclass) with
forces F

Rclass

HF , where k denotes the occupied state. The time-

dependent wave function describing the quantum nuclei is

expanded in a basis of the adiabatic states,

(!Rquant ,Rclass ,t "!)
j
C j! t "# j!Rquant ;Rclass". !3"

The quantum amplitudes Cj(t) are calculated by integrating

the time-dependent Schrödinger equation simultaneously

with the classical equations of motion. Substituting Eq. !3"
into the time-dependent Schrödinger equation leads to

i*Ċn!)
j
C j!Vnj"i*Ṙclass•dn j", !4"

where

Vnj+%#n!Hquant!# j', !5"

dn j+%#n!&Rclass# j'. !6"

At each time step, Tully’s ‘‘fewest switches’’ algorithm29 is

invoked to determine if a quantum transition to another adia-

batic state should occur. This algorithm correctly apportions

trajectories among the adiabatic states according to the quan-

tum probabilities !Cj(t)!2 with the minimum required num-

ber of quantum transitions !neglecting difficulties with clas-
sically forbidden transitions". According to Eq. !4", the
quantum amplitudes change most rapidly in the region of

large nonadiabatic coupling Ṙclass•dn j . As a result, the nona-
diabatic transitions occur most frequently in this coupling

region. The MDQT method has been shown to agree with

fully quantum dynamical calculations for simple model pro-

ton transfer systems.37–39

B. Mixed quantumÕclassical dynamics
with two quantum coordinates

In this section, we present the methodology for treating

both the transferring hydrogen and the donor–acceptor vibra-

tional motions quantum mechanically in mixed Q/C molecu-

lar dynamics simulations involving proton transfer within a

linear AHB complex embedded in solvent. The solvent coor-

dinates are represented as RS . The linear complex may be

described in terms of the coordinates RA , RB , and RH cor-

responding to the positions of A, B, and H, respectively,

where H is constrained to be on the AB axis. Alternatively,

the linear complex may be described in terms of the center of

mass Rcm , the polar coordinates !,,-" representing the ori-
entation, and the scalar distances r!!RA"RH! and R!!RB
"RA!. The masses of A, B, and H are represented by mA ,

mB , and mH , respectively, and the total mass is M!mA

#mB#mH .

Within this framework, the total Hamiltonian is36
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where the first four terms correspond to the kinetic energies

of the solvent, the center of mass of the complex, the angles

representing the orientation of the complex, and the scalar

coordinates r and R . The last term represents the potential

energy of the system. The effective mass matrix and its in-

verse are36

FIG. 1. Schematic picture of the intramolecular proton transfer reaction in

liquid methyl chloride. The filled circles indicate the positive ends and the

open circles indicate the negative ends of the solvent dipoles. The equilib-

rium solvent configurations are qualitatively different for the reactant and

product solute complexes. The dipolar solvent is randomly oriented around

the covalent reactant but is oriented in a manner to stabilize the ionic prod-

uct via electrostatic interactions.
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= phenol (mA = 93)

was not chosen to represent a particular experimental system.

Moreover, an exact fully quantum calculation is not compu-

tationally feasible for this large system. Thus, we focus on a

comparison between 1D and 2D MDQT to elucidate the fun-

damental issues arising from a quantum mechanical treat-

ment of the donor–acceptor vibrational motion as well as the

hydrogen motion. The general physical principles will be

applicable to a wide range of proton transfer systems.

II. METHODS

A. Fundamental aspects of mixed quantumÕclassical
methods

In mixed quantum/classical !Q/C" methods,20,21 the sys-
tem is divided into a classical subsystem with coordinates

Rclass and a quantum subsystem with coordinates Rquant . The

quantum mechanical Hamiltonian Hquant is a sum of the ki-

netic energy of the quantum subsystem and the total potential

energy, which depends on Rclass and Rquant . The adiabatic

states #n(Rquant ;Rclass) are calculated at each classical mo-

lecular dynamics time step by solving the time-independent

Schrödinger equation,

Hquant#n!Rquant ;Rclass"!$n!Rclass"#n!Rquant ;Rclass".
!1"

In the adiabatic approach, the classical coordinates move on

a single adiabatic potential energy surface $k(Rclass), where
k represents the occupied adiabatic state. The Hellmann–

Feynman forces,

F
Rclass

HF !"%#k!&RclassHquant!#k' !2"

are used to numerically integrate the classical equations of

motion. !Here the angular brackets indicate integration over
all quantum coordinates."

The molecular dynamics with quantum transitions

!MDQT" method19,29 incorporates nonadiabatic effects. The
fundamental principle of MDQT is that an ensemble of tra-

jectories is propagated, and each trajectory moves classically

on a single adiabatic surface except for instantaneous transi-

tions among the adiabatic states. The classical subsystem

evolves according to the adiabatic potential $k(Rclass) with
forces F

Rclass

HF , where k denotes the occupied state. The time-

dependent wave function describing the quantum nuclei is

expanded in a basis of the adiabatic states,

(!Rquant ,Rclass ,t "!)
j
C j! t "# j!Rquant ;Rclass". !3"

The quantum amplitudes Cj(t) are calculated by integrating

the time-dependent Schrödinger equation simultaneously

with the classical equations of motion. Substituting Eq. !3"
into the time-dependent Schrödinger equation leads to

i*Ċn!)
j
C j!Vnj"i*Ṙclass•dn j", !4"

where

Vnj+%#n!Hquant!# j', !5"

dn j+%#n!&Rclass# j'. !6"

At each time step, Tully’s ‘‘fewest switches’’ algorithm29 is

invoked to determine if a quantum transition to another adia-

batic state should occur. This algorithm correctly apportions

trajectories among the adiabatic states according to the quan-

tum probabilities !Cj(t)!2 with the minimum required num-

ber of quantum transitions !neglecting difficulties with clas-
sically forbidden transitions". According to Eq. !4", the
quantum amplitudes change most rapidly in the region of

large nonadiabatic coupling Ṙclass•dn j . As a result, the nona-
diabatic transitions occur most frequently in this coupling

region. The MDQT method has been shown to agree with

fully quantum dynamical calculations for simple model pro-

ton transfer systems.37–39

B. Mixed quantumÕclassical dynamics
with two quantum coordinates

In this section, we present the methodology for treating

both the transferring hydrogen and the donor–acceptor vibra-

tional motions quantum mechanically in mixed Q/C molecu-

lar dynamics simulations involving proton transfer within a

linear AHB complex embedded in solvent. The solvent coor-

dinates are represented as RS . The linear complex may be

described in terms of the coordinates RA , RB , and RH cor-

responding to the positions of A, B, and H, respectively,

where H is constrained to be on the AB axis. Alternatively,

the linear complex may be described in terms of the center of

mass Rcm , the polar coordinates !,,-" representing the ori-
entation, and the scalar distances r!!RA"RH! and R!!RB
"RA!. The masses of A, B, and H are represented by mA ,

mB , and mH , respectively, and the total mass is M!mA

#mB#mH .

Within this framework, the total Hamiltonian is36

H!Tsolv!PS"#
Pcm
2

2M
#
1

2I
" P,

2#
P-
2

sin2 , #
#
1

2
!Pr ,PR"!"1" Pr

PR
##V!r ,R ,Rcm ,, ,- ,RS", !7"

where the first four terms correspond to the kinetic energies

of the solvent, the center of mass of the complex, the angles

representing the orientation of the complex, and the scalar

coordinates r and R . The last term represents the potential

energy of the system. The effective mass matrix and its in-

verse are36

FIG. 1. Schematic picture of the intramolecular proton transfer reaction in

liquid methyl chloride. The filled circles indicate the positive ends and the

open circles indicate the negative ends of the solvent dipoles. The equilib-

rium solvent configurations are qualitatively different for the reactant and

product solute complexes. The dipolar solvent is randomly oriented around

the covalent reactant but is oriented in a manner to stabilize the ionic prod-

uct via electrostatic interactions.
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= trimethylamine (mB = 59)

was not chosen to represent a particular experimental system.

Moreover, an exact fully quantum calculation is not compu-

tationally feasible for this large system. Thus, we focus on a

comparison between 1D and 2D MDQT to elucidate the fun-

damental issues arising from a quantum mechanical treat-

ment of the donor–acceptor vibrational motion as well as the

hydrogen motion. The general physical principles will be

applicable to a wide range of proton transfer systems.

II. METHODS

A. Fundamental aspects of mixed quantumÕclassical
methods

In mixed quantum/classical !Q/C" methods,20,21 the sys-
tem is divided into a classical subsystem with coordinates

Rclass and a quantum subsystem with coordinates Rquant . The

quantum mechanical Hamiltonian Hquant is a sum of the ki-

netic energy of the quantum subsystem and the total potential

energy, which depends on Rclass and Rquant . The adiabatic

states #n(Rquant ;Rclass) are calculated at each classical mo-

lecular dynamics time step by solving the time-independent

Schrödinger equation,

Hquant#n!Rquant ;Rclass"!$n!Rclass"#n!Rquant ;Rclass".
!1"

In the adiabatic approach, the classical coordinates move on

a single adiabatic potential energy surface $k(Rclass), where
k represents the occupied adiabatic state. The Hellmann–

Feynman forces,

F
Rclass

HF !"%#k!&RclassHquant!#k' !2"

are used to numerically integrate the classical equations of

motion. !Here the angular brackets indicate integration over
all quantum coordinates."

The molecular dynamics with quantum transitions

!MDQT" method19,29 incorporates nonadiabatic effects. The
fundamental principle of MDQT is that an ensemble of tra-

jectories is propagated, and each trajectory moves classically

on a single adiabatic surface except for instantaneous transi-

tions among the adiabatic states. The classical subsystem

evolves according to the adiabatic potential $k(Rclass) with
forces F

Rclass

HF , where k denotes the occupied state. The time-

dependent wave function describing the quantum nuclei is

expanded in a basis of the adiabatic states,

(!Rquant ,Rclass ,t "!)
j
C j! t "# j!Rquant ;Rclass". !3"

The quantum amplitudes Cj(t) are calculated by integrating

the time-dependent Schrödinger equation simultaneously

with the classical equations of motion. Substituting Eq. !3"
into the time-dependent Schrödinger equation leads to

i*Ċn!)
j
C j!Vnj"i*Ṙclass•dn j", !4"

where

Vnj+%#n!Hquant!# j', !5"

dn j+%#n!&Rclass# j'. !6"

At each time step, Tully’s ‘‘fewest switches’’ algorithm29 is

invoked to determine if a quantum transition to another adia-

batic state should occur. This algorithm correctly apportions

trajectories among the adiabatic states according to the quan-

tum probabilities !Cj(t)!2 with the minimum required num-

ber of quantum transitions !neglecting difficulties with clas-
sically forbidden transitions". According to Eq. !4", the
quantum amplitudes change most rapidly in the region of

large nonadiabatic coupling Ṙclass•dn j . As a result, the nona-
diabatic transitions occur most frequently in this coupling

region. The MDQT method has been shown to agree with

fully quantum dynamical calculations for simple model pro-

ton transfer systems.37–39

B. Mixed quantumÕclassical dynamics
with two quantum coordinates

In this section, we present the methodology for treating

both the transferring hydrogen and the donor–acceptor vibra-

tional motions quantum mechanically in mixed Q/C molecu-

lar dynamics simulations involving proton transfer within a

linear AHB complex embedded in solvent. The solvent coor-

dinates are represented as RS . The linear complex may be

described in terms of the coordinates RA , RB , and RH cor-

responding to the positions of A, B, and H, respectively,

where H is constrained to be on the AB axis. Alternatively,

the linear complex may be described in terms of the center of

mass Rcm , the polar coordinates !,,-" representing the ori-
entation, and the scalar distances r!!RA"RH! and R!!RB
"RA!. The masses of A, B, and H are represented by mA ,

mB , and mH , respectively, and the total mass is M!mA

#mB#mH .

Within this framework, the total Hamiltonian is36

H!Tsolv!PS"#
Pcm
2

2M
#
1

2I
" P,

2#
P-
2

sin2 , #
#
1

2
!Pr ,PR"!"1" Pr

PR
##V!r ,R ,Rcm ,, ,- ,RS", !7"

where the first four terms correspond to the kinetic energies

of the solvent, the center of mass of the complex, the angles

representing the orientation of the complex, and the scalar

coordinates r and R . The last term represents the potential

energy of the system. The effective mass matrix and its in-

verse are36

FIG. 1. Schematic picture of the intramolecular proton transfer reaction in

liquid methyl chloride. The filled circles indicate the positive ends and the

open circles indicate the negative ends of the solvent dipoles. The equilib-

rium solvent configurations are qualitatively different for the reactant and

product solute complexes. The dipolar solvent is randomly oriented around

the covalent reactant but is oriented in a manner to stabilize the ionic prod-

uct via electrostatic interactions.
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= methylchloride (mMe = 15, mCl = 35)

Illustration from S.Y.Kim and S.Hammes-Schiffer, JCP 2003:

B. Proton transfer in a polar solvent 11



t (ps)

Method kH / 1010 s-1 kD / 1010 s-1 kH / kD

QTST 13.5 0.34 40

RPMD 1.62 0.085 19

Results for H and D transfer (with r = rAH = proton transfer coordinate)
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The proton transfer coordinate exhibits significant recrossing…
(shown here for a representative trajectory)

…owing to the heavy-light-heavy mass combination.
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But the solvent polarisation does not…

…and this reaction coordinate gives exactly the same RPMD rate!



N. Boekelheide et al.
PNAS 108, 16159 (2011)

C.  “Dynamics and dissipation in enzyme catalysis” 12



D.  And finally…

See Joseph Lawrence’s talk on Friday for more details!

Having “solved” the adiabatic rate problem, we are now

working on non-adiabatic (electron transfer) rates.
13,14



5. References

1. T. Yamamoto, J. Chem. Phys. 33, 281 (1960).

2. W. H. Miller, S. D. Schwartz and J. W. Tromp, J. Chem. Phys. 61, 1823
(1974).

3. M. J. Gillan, Phys. Rev. Lett. 58, 563 (1987).

4. G. A. Voth, D. Chandler and W. H. Miller, J. Chem. Phys. 91, 7749
(1989).

5. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005).

6. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 123, 034102 (2005).

7. R. Collepardo-Guevara, Y. V. Suleimanov and D. E. Manolopoulos, J.
Chem. Phys. 130, 174713 (2009).

8. Y. V. Suleimanov, R. Collepardo-Guevara and D. E. Manolopoulos, J.
Chem. Phys. 134, 044131 (2011).

9. J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009).



10. R. Perez de Tuleda, F. J. Aoiz, Y. V. Suleimanov and D. E. Manolopoulos,
J. Phys. Chem. Lett. 3, 493 (2012).

11. R. Collepardo-Guevara, I. R. Craig and D. E. Manolopoulos, J. Chem.
Phys. 128, 144502 (2008).

12. N. Boekelheide, R. Salomón-Ferrer and T. F. Miller III, Proc. Nat. Acad.
Sci. USA 108, 16159 (2011).

13. P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987).

14. J. E. Lawrence and D. E. Manolopoulos, J. Chem. Phys. 148, 102313
(2018).


