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Abstract

We examine the short-time accuracy of a class of approximate quantum dynamical techniques

that includes the centroid molecular dynamics (CMD) and ring polymer molecular dynamics

(RPMD) methods. Both of these methods are based on the path integral molecular dynamics

(PIMD) technique for calculating the exact static equilibrium properties of quantum mechanical

systems. For Kubo-transformed real-time correlation functions involving operators that are linear

functions of positions or momenta, the RPMD and (adiabatic) CMD approximations differ only

in the choice of the artificial mass matrix of the system of ring polymer beads that is employed in

PIMD. The obvious ansatz for a general method of this type is therefore to regard the elements

of the PIMD (or Parrinello-Rahman) mass matrix as an adjustable set of parameters that can be

chosen to improve the accuracy of the resulting approximation. We show here that this ansatz leads

uniquely to the RPMD approximation when the criterion that is used to select the mass matrix

is the short-time accuracy of the Kubo-transformed correlation function. In particular, we show

that the leading error in the RPMD position autocorrelation function is O(t8) and the error in the

velocity autocorrelation function is O(t6), for a general anharmonic potential. The corresponding

errors in the CMD approximation are O(t6) and O(t4), respectively.
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I. INTRODUCTION

There is considerable current interest in the inclusion of quantum mechanical zero-point

energy and tunneling effects in condensed phase molecular dynamics simulations. At the

most rigorous level, these effects can be included using a complex-time Feynman path

integral,1−3 and significant progress has now been made in this direction as exemplified by

the recent short-time path integral study of sub-critical liquid para-hydrogen by Nakayama

and Makri.4 For more general problems involving the longer time dynamics of more compli-

cated systems at higher densities, however, the approach of Nakayama and Makri becomes

less practical, and it is clear that there will always be many interesting problems for which

one will have to resort to the use of a less accurate quantum dynamical technique.

There are essentially three distinct classes of such technique that have been applied to

condensed phase systems, each with its own strengths and weaknesses. The methods in the

first class include the numerical analytic continuation (NAC) approach of Berne and co-

workers,5−8 and the quantum mode-coupling theory (QMCT) of Reichman and Rabani.9−14

These methods make analytical use of numerically-computed imaginary-time information to

construct an approximation to a real-time quantum correlation function. The nature of the

approximation is such that the short-time behavior of the correlation function is captured

very accurately; this and the ease with which the required imaginary-time information can

be computed are the two main appeals of this class of technique. However, neither NAC

nor QMCT is exact in the classical limit (where QMCT reduces to classical mode-coupling

theory15), and the numerical inversion procedure used in NAC can run into difficulties if the

spectrum of the correlation function has multiple maxima.16 And although QMCT provides

an appealing description of the dynamics of monatomic quantum fluids,9−14 mode-coupling

theory is extremely difficult to apply to molecular liquids.17,18

The second class of techniques includes the linearized semiclassical initial value repre-

sentation (LSC-IVR) of Miller and co-workers,19−22 the Feynman-Kleinert linearized path

integral (FK-LPI) approach of Poulsen, Nyman and Rossky,23−26 and the forward-backward

semiclassical dynamics (FB-SD) approach of Makri and co-workers.27−32 These methods

combine what is in principle an exact treatment of the quantum Boltzmann operator with

an approximate treatment of the real-time evolution based on classical dynamics. Their

main strength is that they are exact in three important limits that often govern the behav-

2



ior of condensed phase simulations: the short-time limit, the limit of a harmonic potential,

and the classical (or high-temperature) limit. However, because classical trajectories do

not in general conserve the quantum mechanical equilibrium distribution (in the form of the

Wigner33 or Husimi34 functions of the quantum Boltzmann operator),35 there are several im-

portant situations in which the methods in this class can lead to unphysical behavior, such

as the flow of initially quantized zero-point energy from intramolecular to intermolecular

modes in the simulation of a molecular liquid.36

The final class of approximate quantum dynamical techniques includes the centroid molec-

ular dynamics (CMD) method developed by Voth and co-workers,37−44 and the ring polymer

molecular dynamics (RPMD) method developed within our research group.45−50 These meth-

ods combine an exact treatment of the quantum Boltzmann operator with a modified form

of classical mechanics that exactly conserves the quantum mechanical equilibrium distri-

bution. In the case of CMD, the modification consists of replacing the classical potential

energy function with an imaginary-time centroid potential of mean force,39 and in the case of

RPMD it consists of performing the classical molecular dynamics simulation in the extended

phase space of the imaginary-time path integral.45 For correlation functions involving linear

functions of position and/or momentum operators, these methods are again exact in the

limit as t → 0, in the limit of a harmonic potential, and in the classical limit. However,

both methods run into certain (as yet largely unresolved) difficulties for correlation functions

involving strongly non-linear operators.50−53

Weighing up these various pros and cons, we believe that the CMD and RPMD methods

probably provide two of the more promising ways to include quantum mechanical fluctua-

tions in condensed phase molecular dynamics simulations (especially in the case of molecular

liquids), and indeed both of these methods have now been shown to capture the dominant

quantum mechanical effects in a wide variety of interesting situations.46−50,54−59 This being

the case, it is natural to ask whether one can do any better than either of these methods by

exploring the entire class of related imaginary-time path integral techniques, which brings

us to the point of the present paper.

In practical applications of the CMD method to complex systems, the centroid potential

of mean force is typically calculated using an adiabatic CMD algorithm that bears a very

close resemblance to RPMD.41 In both methods, the dynamics is performed in an extended

phase space of the type that arises in the exact path integral molecular dynamics (PIMD)
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method for calculating the static equilibrium properties of quantum mechanical systems.60

As has been explained recently by Hone, Rossky and Voth,61 the essential difference between

the RPMD and (adiabatic) CMD algorithms is in the choice of the fictitious masses of the

ring polymer beads that arise in PIMD.60 These authors used this observation to develop

a new method (termed partially-adiabatic CMD or PACMD) that essentially interpolates

between the two approximations.61 Here we shall use the same observation to address a

different issue that is motivated by one of the many interesting questions raised by their

work:61 of all the possible imaginary-time path integral methods for real-time dynamics,

which gives the most accurate result in the short-time limit?

The outline of the paper is as follows. Sec. II begins by introducing the Kubo-

transformed62,63 quantum correlation functions that are approximated in RPMD and CMD,

and showing how their short-time behavior can be developed in a Taylor series. Sec. III then

presents a general ansatz for an imaginary-time path integral-based dynamical method that

includes the RPMD and CMD (and also PACMD) approximations as special cases. This

ansatz involves an arbitrary mass matrix for the beads of the imaginary-time ring polymer

of the type that was first introduced in diagonal form as an equilibrium sampling device by

Parrinello and Rahman.60 Sec. III ends by showing how this Parrinello-Rahman mass matrix

can be determined by requiring that the resulting dynamical approximation reproduce the

leading terms in the exact Taylor series expansion of the real-time correlation function.

In order to keep our notation as simple as possible, we have confined our attention in

Secs. II and III to Kubo-transformed correlation functions involving configurational (or

local) operators in a simple one-dimensional model system. However, our results are much

more general than this may seem to suggest, as Sec. IV illustrates by outlining how the

theory in the preceding two sections can be extended to treat the Kubo-transformed velocity

autocorrelation function of a monatomic liquid. Other multi-dimensional generalizations

follow along the same lines, and give results that are entirely consistent with the one-

dimensional results obtained in Secs. II and III; the only reason we have chosen to focus on

the velocity autocorrelation function is that there has been a lot of recent interest in the

frequency-dependent diffusion coefficients of simple quantum liquids8,12,25,30,47,57,61,64 (see also

the discussion at the end of Sec. IV). Sec. V concludes with a few brief remarks about the

implications of our results and mentions one of the remaining issues concerning the difference

between CMD and RPMD that we still do not fully understand.
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II. KUBO-TRANSFORMED CORRELATION FUNCTIONS

As we have already mentioned in the Introduction, we shall begin by considering a simple

one-dimensional Hamiltonian of the form

Ĥ =
p̂2

2m
+ V (q̂), (1)

in which the potential energy function V (q) is assumed to be differentiable as many times as

our argument requires and to lead to a well-defined quantum mechanical partition function

Z = tr
[
e−βĤ

]
(2)

with β = 1/kBT . We shall also begin by restricting our attention to the Kubo-transformed

correlation functions involving local (position-dependent) Hermitian operators

c̃AB(t) =
1

βZ

∫ β

0
dλ tr

[
e−(β−λ)ĤÂ e−λĤe+iĤt/h̄B̂ e−iĤt/h̄

]
, (3)

where Â = A(q̂) and B̂ = B(q̂). This is actually less of a restriction than it may seem,

because many physically interesting correlation functions involving more general operators

can be calculated as time derivatives of correlation functions of this special form.46−49

Since we shall ultimately be interested in the accuracy of short-time approximations to

c̃AB(t), it is natural to consider expanding this function in a Taylor series. For Hermitian

operators Â and B̂, it is straightforward to show by working in the basis of energy eigenstates

that c̃AB(t) will be a real and even function of t, and so provided the series converges we

will have

c̃AB(t) =
∞∑

r=0

t2r

(2r)!
c̃
(2r)
AB (0), (4)

where c̃
(k)
AB(0) is the k-th derivative of c̃AB(t) at time t = 0. Any real and even approximation

to c̃AB(t) can clearly be expanded in the same way, and so by comparing the first few coeffi-

cients in the approximate and exact expansions one can determine the short-time accuracy

of the approximation. But in order to do this we first need to obtain explicit expressions for

the exact expansion coefficients c̃
(2r)
AB (0).

The first expansion coefficient c̃
(0)
AB(0) can be computed directly from Eq. (3):

c̃
(0)
AB(0) =

1

βZ

∫ β

0
dλ tr

[
e−(β−λ)ĤÂ e−λĤB̂

]
. (5)
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However, this is something of a special case, because repeated differentiation of Eq. (3) does

not lead to very useful expressions for the remaining coefficients c̃
(2r)
AB (0). A more convenient

way to compute the coefficients with r > 0 is provided by the relation65

c̃
(1)
AB(t) = − 2

βh̄
Im cAB(t), (6)

where cAB(t) is the standard real-time correlation function

cAB(t) =
1

Z
tr
[
e−βĤÂ e+iĤt/h̄B̂e−iĤt/h̄

]
. (7)

Since the Boltzmann and evolution operators in Eq. (7) commute, and since the last evolution

operator e−iĤt/h̄ can be brought around to the beginning of the trace, we can obtain a variety

of different expressions for the derivatives of cAB(t) with respect to t. The most convenient

of these expressions is obtained by performing r− 1 differentiations with e−iĤt/h̄ on the left

of the trace and r with it on the right, which in conjunction with Eq. (6) gives

c̃
(2r)
AB (0) =

2(−1)r

βh̄Z
Im tr

[
e−βĤÂ(r−1)B̂(r)

]
, (8)

where Â(r−1) and B̂(r) are the (r−1)-st and r-th Heisenberg time derivatives of the operators

Â and B̂. (Â(r−1) can be computed recursively from Â(0) ≡ Â using the relation

Â(k) =
i

h̄

[
Ĥ, Â(k−1)

]
(9)

for k = 1, 2, . . . , r−1, and B̂(r) can be computed in the same way.) Eq. (8) simplifies further

when we write

Â(r−1)B̂(r) =
1

2

{
Â(r−1), B̂(r)

}
+

1

2

[
Â(r−1), B̂(r)

]
, (10)

the first bracket in which is the Hermitian anti-commutator and the second the anti-

Hermitian commutator of the two Hermitian operators Â(r−1) and B̂(r); since the trace

of a product of two Hermitian operators is purely real the first bracket does not make any

contribution to Eq. (8) and we obtain

c̃
(2r)
AB (0) =

(−1)r

βh̄Z
Im tr

(
e−βĤ

[
Â(r−1), B̂(r)

])
. (11)

Let us now illustrate this result by applying it to the Kubo-transformed position autocor-

relation function c̃qq(t), for which Â = B̂ = q̂ and the first few Heisenberg time derivatives

of the correlated operators are given by

q̂(0) = q̂, (12)
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q̂(1) =
1

m
p̂, (13)

q̂(2) = − 1

m
V ′(q̂), (14)

q̂(3) = − 1

2m2

[
p̂ V ′′(q̂) + V ′′(q̂) p̂

]
. (15)

For this correlation function, the first expansion coefficient c̃(0)
qq (0) in Eq. (4) is given by

Eq. (5) as

c̃(0)
qq (0) =

1

βZ

∫ β

0
dλ tr

[
e−(β−λ)Ĥ q̂ e−λĤ q̂

]
, (16)

and it is hard to see how to make any further progress with this without resorting to an

explicit imaginary-time path integral evaluation of the trace (see Sec. III). However, the

second expansion coefficient c̃(2)
qq (0) is given by Eq. (11) as

c̃(2)
qq (0) = − 1

βh̄Z
Im tr

(
e−βĤ

[
q̂(0), q̂(1)

])
, (17)

and since [
q̂(0), q̂(1)

]
=

1

m

[
q̂, p̂

]
=

ih̄

m
, (18)

this immediately simplifies to

c̃(2)
qq (0) = − 1

βm
. (19)

A similar simplification is obtained for the third expansion coefficient c̃(4)
qq (0), which is

given by Eq. (11) as

c̃(4)
qq (0) =

1

βh̄Z
Im tr

(
e−βĤ

[
q̂(1), q̂(2)

])
. (20)

Since [
q̂(1), q̂(2)

]
= − 1

m2

[
p̂, V ′(q̂)

]
=

ih̄

m2
V ′′(q̂), (21)

this gives

c̃(4)
qq (0) =

1

βm2
〈V ′′(q)〉 , (22)

where the angular brackets denote a thermal expectation value

〈Ω〉 ≡ 1

Z
tr
[
e−βĤΩ̂

]
. (23)

The Heisenberg time derivatives in Eqs. (14) and (15) also allow us to obtain the fourth

expansion coefficient c̃(6)
qq (0) in Eq. (4), which is given by Eq. (11) as

c̃(6)
qq (0) = − 1

βh̄Z
Im tr

(
e−βĤ

[
q̂(2), q̂(3)

])
. (24)
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In this case we have

[
q̂(2), q̂(3)

]
=

1

2m3

[
V ′(q̂), p̂ V ′′(q̂) + V ′′(q̂) p̂

]
=

ih̄

m3
V ′′(q̂)2, (25)

and so

c̃(6)
qq (0) = − 1

βm3

〈
V ′′(q)2

〉
. (26)

The same argument can in principle be extended to higher orders. However, the resulting

expressions become increasingly unwieldy as r increases, and since it suffices to determine

the optimum Parrinello-Rahman mass matrix (see below) we shall stop in the present study

at c̃
(6)
AB(0).

It is more difficult to calculate so many terms for a Kubo-transformed correlation function

involving more general Hermitian operators A(q̂) and B(q̂), but a similar argument readily

produces the first two terms in the Taylor series [Eq. (4)]. The first coefficient c̃
(0)
AB(0) has

already been given in Eq. (5), and the second coefficient c̃
(2)
AB(0) is given by Eq. (11) as

c̃
(2)
AB(0) = − 1

βh̄Z
Im tr

(
e−βĤ

[
Â(0), B̂(1)

])
, (27)

where Â(0) = A(q̂) and

B̂(1) =
1

2m

[
p̂ B′(q̂) + B′(q̂) p̂

]
. (28)

Since [
Â(0), B̂(1)

]
=

1

2m

[
A(q̂), p̂ B′(q̂) + B′(q̂) p̂

]
=

ih̄

m
A′(q̂)B′(q̂), (29)

this gives

c̃
(2)
AB(0) = − 1

βm
〈A′(q)B′(q)〉 , (30)

which reduces correctly to c̃
(2)
AB(0) = −1/βm when A(q̂) = B(q̂) = q̂. For more general A(q̂)

and B(q̂), Eq. (30) has a similar structure to Eq. (26), and it turns out that the evaluation

of the higher order coefficients c̃
(2r)
AB (0) with r > 1 is just as forbidding in this case as the

evaluation the coefficients c̃(2r)
qq (0) with r > 3. We shall therefore stop in the present study

at c̃
(2)
AB(0).

III. RING POLYMER MOLECULAR DYNAMICS

A general ansatz for a quantum dynamical method based on PIMD, which includes the

RPMD and (adiabatic) CMD approximations as special cases, is as follows. The Kubo-
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transformed correlation function c̃AB(t) in Eq. (3) is approximated by

c̃AB(t) ' 1

N

∫
dp
∫

dq e−βnHn(p,q)An(q)Bn(qt), (31)

with

N =
∫

dp
∫

dq e−βnHn(p,q), (32)

where βn = β/n,

Hn(p,q) =
1

2
pTM−1p +

1

2
qTKq +

n∑
j=1

V (qj), (33)

and

An(q) =
1

n

n∑
j=1

A(qj), Bn(q) =
1

n

n∑
j=1

B(qj). (34)

Here Hn(p,q) is the Hamitonian of an n-bead harmonic ring polymer with an external

potential of V (q) acting on each bead.66 The ansatz is completed by assuming that the

time-evolved ring polymer configuration qt ≡ qt(p,q) in Eq. (31) is obtained from the

classical dynamics generated by this Hamiltonian,45

ṗ = −∂Hn(p,q)/∂q = −Kq− g(q), (35)

q̇ = +∂Hn(p,q)/∂p = +M−1p, (36)

where gj(q) = V ′(qj). The only flexibility that this leaves is in the choice of the ring polymer

force constant matrix K and the mass matrix M, which we shall now determine by requiring

that the approximation in Eq. (31) give the exact result for as many of the Taylor series

expansion coefficients c̃
(2r)
AB (0) in Eq. (4) as possible.

Let us assume from the outset that the mass matrix M is real-symmetric and positive-

definite, so that the momentum integrals in Eqs. (31) and (32) are well defined. These

integrals will then cancel from the approximation to c̃AB(t) at time t = 0, and so the first

Taylor series expansion coefficient c̃
(0)
AB(0) in Eq. (5) will be given by Eq. (31) as

c̃
(0)
AB(0) =

1

N ′

∫
dq e−βnVn(q)An(q)Bn(q), (37)

where

N ′ =
∫

dq e−βnVn(q), (38)

with

Vn(q) =
1

2
qTKq +

n∑
j=1

V (qj). (39)
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Equation (37) has the form of a primitive imaginary-time path integral (Trotter product67)

discretization of Eq. (5) involving n path integral beads.45 A constraint on the force constant

matrix that gives the correct result in the limit as n →∞ is thus3,66

1

2
qTKq =

n∑
j=1

1

2
mω2

n(qj − qj−1)
2, (40)

where m is the physical particle mass, ωn = n/(βh̄), and q0 ≡ qn. The first expansion

coefficient c̃
(0)
AB(0) in Eq. (4) will therefore be given exactly by Eq. (31) in the large-n limit

if the elements of the force constant matrix K are given by

Kjj′ = mω2
n (2δj,j′ − δj,j′−1 − δj,j′+1 − δj,1δj′,n − δj,nδj′,1) . (41)

Note that the resulting matrix K is real-symmetric and positive semi-definite, which is

sufficient to ensure that the integrals over q in Eqs. (31) and (32) will converge for any

potential V (q) that leads to a well-defined partition function. The eigenvalues of K are kl =

4mω2
n sin2(lπ/n) for l = 0, 1, 2, . . . , n−1, and the normalized eigenvector c corresponding to

l = 0 (the centroid mode of the ring polymer) has elements cj = n−1/2 for j = 1, 2, . . . , n;

the main result that we shall need below is that

Kc = 0. (42)

So far, we have used the first Taylor expansion coefficient c̃
(0)
AB(0) in Eq. (4) to constrain the

ring polymer force constant matrix K, but the mass matrix M is still pretty much arbitrary.

This is not surprising: c̃
(0)
AB(0) is a static equilibrium property that can be computed exactly

by PIMD using any choice of the fictitious masses for the ring polymer beads that were

first introduced by Parrinello and Rahman.60 In the RPMD method,45 the mass matrix is

chosen to be M = mI, where m is the physical particle mass and I is the (n × n) identity

matrix. In the adiabatic CMD method,41 the mass matrix is chosen to be diagonal in the

basis that diagonalises K, the mass of the centroid mode is chosen to be the physical mass

m, and the masses of the remaining modes are specified as ml = 4mγ2n sin2(lπ/n), where

γ is an adiabaticity parameter.61 These choices give the frequencies of the normal modes of

the free ring polymer as ω0 = 0 and ωl =
√

kl/ml =
√

n/(βh̄γ) for l > 0. For a sufficiently

small adiabaticity parameter γ, the high-frequency modes will thus be well-separated from

the centroid mode, and the effective force on the centroid will be rapidly averaged over

the fluctuations of the remaining modes.41,61 It is claimed in Ref. 61 that this adiabatic
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separation of the centroid from the remaining modes leads to a more accurate short-time

dynamics of the centroid coordinate and hence to a more accurate short-time approximation

to c̃qq(t). We shall now investigate this claim by using the remaining Taylor series expansion

coefficients c̃
(2r)
AB (0) determined in Sec. II to find the Parrinello-Rahman mass matrix M

that gives the most accurate short-time approximation to the Kubo-transformed correlation

function.

The central result we shall use to do this is the following approximation to the expansion

coefficient c̃
(2r)
AB (0), which results from a repeated differentiation of Eq. (31):

c̃
(2r)
AB (0) ' (−1)s

N

∫
dp
∫

dq e−βnHn(p,q)A(s)
n (q)B(2r−s)

n (q). (43)

Here s can be any integer between 0 and 2r, and A(s)
n (q) and B(2r−s)

n (q) are respectively

the s-th and (2r − s)-th time derivatives of the functions An(q) and Bn(q) in Eq. (34) at

time t = 0 as obtained from the ring polymer dynamics in Eqs. (35) and (36). [The reason

why one can use any s in Eq. (43) is that the ring polymer dynamics conserves both the

ring polymer Hamiltonian and the ring polymer phase space volume, and so Eq. (31) can

be written equivalently in the form

c̃AB(t) ' 1

N

∫
dpt

∫
dqt e

−βnHn(pt,qt)An(q)Bn(qt). (44)

Shifting the integration variables back from (pt,qt) to (p,q) gives

c̃AB(t) ' 1

N

∫
dp
∫

dq e−βnHn(p,q)An(q−t)Bn(q), (45)

and performing s of the 2r differentiations with the equation in this form and 2r− s with it

in the form of Eq. (31) gives the result we have written in Eq. (43).]

We shall begin as we did in Sec. II by considering the special case of the position au-

tocorrelation function, for which A(q̂) = B(q̂) = q̂. In this case, the functions An(q) and

Bn(q) in Eq. (34) are the same,

An(q) = Bn(q) = qn(q) =
1

n

n∑
j=1

qj, (46)

and their first few time derivatives are given by the classical ring polymer dynamics in

Eqs. (35) and (36) as

q(0)
n (q) = eTq, (47)

q(1)
n (q) = eTM−1p, (48)

11



q(2)
n (q) = −eTM−1 [Kq + g(q)] , (49)

q(3)
n (q) = −eTM−1 [K + H(q)]M−1p, (50)

where e = n−1/2c is a column vector with elements ej = 1/n for j = 1, 2, . . . , n, and H(q) is

a diagonal matrix with diagonal elements Hjj(q) = V ′′(qj).

Choosing s = 1 for convenience, the second expansion coefficient c̃(2)
qq (0) is given by

Eq. (43) as

c̃(2)
qq (0) = − 1

N

∫
dp
∫

dq e−βnHn(p,q)
[
eTM−1p

]2
, (51)

the momentum integral in which can readily be evaluated with the help of the following

identity: ∫
dp e−βnpT M−1p/2 aTpbTp =

1

βn

aTMb
∫

dp e−βnpT M−1p/2. (52)

In view of the definition of N in Eq. (32), the result is simply

c̃(2)
qq (0) = − 1

βn

eTM−1e, (53)

or equivalently (since βn = β/n and e = n−1/2c)

c̃(2)
qq (0) = − 1

β
cTM−1c, (54)

where c is the normalised centroid eigenvector of the ring polymer force constant matrix in

Eq. (42). In order for this to agree with the exact result in Eq. (19), the mass matrix M

must satisfy

cTM−1c =
1

m
, (55)

which (since c is normalised and both methods involve a non-singular mass matrix M that

satisfies Mc = mc) is the case in both CMD and RPMD.

For the third Taylor series expansion coefficient c̃(4)
qq (0) in Eq. (4), it is again convenient

to choose s = 1 in Eq. (43), which gives

c̃(4)
qq (0) =

1

N

∫
dp
∫

dq e−βnHn(p,q) eTM−1peTM−1 [K + H(q)]M−1p. (56)

The momentum integral in this equation can again be evaluated with the help of Eq. (52),

and the result can again be simplified using the fact that βn = β/n and e = n−1/2c:

c̃(4)
qq (0) =

1

βN

∫
dp
∫

dq e−βnHn(p,q) cTM−1 [K + H(q)]M−1c. (57)

12



For comparison with this result, the exact expression for c̃(4)
qq (0) in Eq. (22) can be written in

the present notation (after an n bead path integral discretization of the thermal expectation

value) as

c̃(4)
qq (0) =

1

βm2N

∫
dp
∫

dq e−βnHn(p,q) cTH(q)c. (58)

Thus Eq. (31) will only give the exact result for c̃(4)
qq (0) if

cTM−1 [K + H(q)]M−1c =
1

m2
cTH(q)c, (59)

which since Kc = 0 will be satisfied provided that

M−1c =
1

m
c. (60)

Note that this is a more severe constraint than the one in Eq. (55), and that it includes

Eq. (55) as a special case. (That is, any mass matrix M that satisfies Eq. (60) will also

satisfy Eq. (55), but not conversely.) Note also that Eq. (60) is satisfied by the mass matrices

that are employed in CMD and RPMD.

The fourth Taylor series expansion coefficient c̃(6)
qq (0) in Eq. (4) places an even more severe

restriction on the mass matrix, and suffices to determine it uniquely. In this case it is most

convenient to choose s = 3 in Eq. (43), which gives

c̃(6)
qq (0) = − 1

N

∫
dp
∫

dq e−βnHn(p,q)
{
eTM−1 [K + H(q)]M−1p

}2
. (61)

The momentum integral in this equation can yet again be evaluated using Eq. (52), and the

result yet again simplified using βn = β/n and e = n−1/2c. Assuming that the mass matrix

M satisfies Eq. (60), so that the expansion coefficients c̃(2)
qq (0) and c̃(4)

qq (0) are given correctly,

and noting again that Kc = 0, we obtain

c̃(6)
qq (0) = − 1

βm2N

∫
dp
∫

dq e−βnHn(p,q) cTH(q)M−1H(q)c. (62)

For comparison, the exact result in Eq. (26) can be written in the present notation as

c̃(6)
qq (0) = − 1

βm3N

∫
dp
∫

dq e−βnHn(p,q) cTH(q)2c. (63)

When the potential energy function V (q) is harmonic, so that the matrix H(q) is simply a

constant times a unit matrix, Eq. (62) will give the same result as Eq. (63) for any mass

matrix M that satisfies Eq. (60). However, in the more general case of an anharmonic
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potential energy function, Eq. (62) will only give the same result as Eq. (63) if the following

equation is satisfied for an arbitrary diagonal matrix H(q):

cTH(q)M−1H(q)c =
1

m
cTH(q)2c. (64)

This is a very severe constraint indeed, and it uniquely determines the Parrinello-Rahman

mass matrix as the one that is employed in RPMD:

M = mI. (65)

Finally, let us consider the short-time accuracy of Eq. (31) for more general Hermitian

operators A(q̂) and B(q̂). We have already argued that the first Taylor series expansion

coefficient c̃
(0)
AB(0) in Eq. (4) will be obtained exactly by the PIMD ansatz provided the ring

polymer force constant matrix K is as specified in Eq. (41). This leaves the second expansion

coefficient c̃
(2)
AB(0), which is given by Eq. (43) as

c̃
(2)
AB(0) = − 1

N

∫
dp
∫

dq e−βnHn(p,q)A(1)
n (q)B(1)

n (q). (66)

Here A(1)
n (q) and B(1)

n (q) are the first time derivatives of the functions An(q) and Bn(q) at

time t = 0. In view of Eq. (36), these are given by

A(1)
n (q) = eTA(1)(q)M−1p, (67)

B(1)
n (q) = eTB(1)(q)M−1p, (68)

where A(1)(q) and B(1)(q) are diagonal matrices with diagonal elements A
(1)
jj (q) = A′(qj)

and B
(1)
jj (q) = B′(qj). Substituting these results into Eq. (66), using Eq. (52) to evaluate

the momentum integral, and noting again that βn = β/n and e = n−1/2c, we obtain

c̃
(2)
AB(0) = − 1

βN

∫
dp
∫

dq e−βnHn(p,q)cTA(1)(q)M−1B(1)(q)c. (69)

For comparison with this, the exact result in Eq. (30) can be written in the same notation

as

c̃
(2)
AB(0) = − 1

βmN

∫
dp
∫

dq e−βnHn(p,q)cTA(1)(q)B(1)(q)c. (70)

Equation (31) will therefore only give the exact result for c̃
(2)
AB(0) in the case of general

(non-linear) operators A(q̂) and B(q̂) if the mass matrix M is such that

cTA(1)(q)M−1B(1)(q)c =
1

m
cTA(1)(q)B(1)(q)c (71)

for arbitrary diagonal matrices A(1)(q) and B(1)(q). This constraint is just as restrictive as

that in Eq. (64), and it again leads uniquely to the RPMD mass matrix in Eq. (65).

14



IV. A MULTI-DIMENSIONAL GENERALIZATION

In the preceding two sections, we have shown that the PIMD ansatz in Eq. (31) leads

uniquely to the RPMD approximation45 when the criterion that is used to select the

Parrinello-Rahman60 mass matrix is the short-time accuracy of the Kubo-transformed cor-

relation function. In the case of the position autocorrelation function c̃qq(t), the RPMD

approximation is exact to O(t6), for the velocity autocorrelation function c̃vv(t) = −c̃(2)
qq (t)

it is exact to O(t4), and for a general Kubo-transformed correlation function c̃AB(t) involv-

ing non-linear local operators the approximation is exact to O(t2). Although our analysis

has not gone far enough to determine them explicitly, the leading errors in the RPMD ap-

proximations to c̃qq(t), c̃vv(t), and c̃AB(t) are therefore O(t8), O(t6), and O(t4), respectively.

And although we have confined our attention to a simple one-dimensional problem, it is

straightforward to show that these results apply equally well to systems with more degrees

of freedom.

In the absence of identical particle exchange effects, the Kubo-transformed velocity au-

tocorrelation function of a monatomic liquid, for example, is given exactly by

c̃v·v(t) =
1

βm2naZ

na∑
i=1

∫ β

0
dλ tr

[
e−(β−λ)Ĥp̂ie

−λĤ ·e+iĤt/h̄p̂ie
−iĤt/h̄

]
, (72)

where na is the number of atoms in the liquid, m is their atomic mass, p̂i is the momentum

operator of atom i, and Ĥ is the Hamiltonian operator

Ĥ =
na∑
i=1

p̂2
i

2m
+ V (r̂1, . . . , r̂na). (73)

This autocorrelation function is a real and even function of t which can be expanded as in

Eq. (4), and the first few expansion coefficients can be obtained using the methods developed

in Sec. II:

c̃(0)
v·v(0) =

3

βm
, (74)

c̃(2)
v·v(0) = − 1

βm2na

na∑
i=1

∑
η=x,y,z

〈
∂2V (r1, . . . , rna)

∂η2
i

〉
, (75)

c̃(4)
v·v(0) =

1

βm3na

na∑
i,i′=1

∑
η,η′=x,y,z

〈(
∂2V (r1, . . . , rna)

∂ηi∂η′i′

)2〉
. (76)

Here the sums over η and η′ are over the Cartesian components of the position vectors ri

and ri′ , and the angular brackets denote a thermal expectation value as in Eq. (23). Note
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the similarities and differences between these expansion coefficients and those in Eqs. (19),

(22) and (26): the similarities arise because the velocity autocorrelation function is minus

the second time derivative of a position autocorrelation function, and the differences arise

because we are now considering an na-particle system in three-dimensional space.

Turning to the RPMD approximation, the analogue of Eq. (43) in the present context is

c̃(2r)
v·v (0) ' (−1)s

N

∫ ∫ na∏
k=1

n∏
j=1

dpk,jdrk,j e−βnHn({pk,j},{rk,j}) 1

m2na

na∑
i=1

p
(s)
i ·p(2r−s)

i , (78)

where

N =
∫ ∫ na∏

k=1

n∏
j=1

dpk,jdrk,j e−βnHn({pk,j},{rk,j}). (79)

Here Hn({pk,j}, {rk,j}) is the classical Hamiltonian of na atomic ring polymers which interact

through the interaction potential V ; with the RPMD choice of the Parrinello-Rahman mass

matrix for each atomic ring polymer this is simply47

Hn({pk,j}, {rk,j}) =
na∑

k=1

n∑
j=1

[
p2

k,j

2m
+

1

2
mω2

n(rk,j − rk,j−1)
2

]
+

n∑
j=1

V (r1,j, . . . , rna,j), (80)

subject to the cyclic boundary condition ri,0 ≡ ri,n. The quantities p
(s)
i and p

(2r−s)
i in

Eq. (78) are the s-th and (2r− s)-th time derivatives of the momentum centroid of the i-th

ring polymer at time t = 0, as obtained from the classical dynamics generated by this ring

polymer Hamiltonian; the first few of these derivatives are found to be

p
(0)
i =

1

n

n∑
j=1

pi,j, (81)

p
(1)
i = − 1

n

n∑
j=1

∂V (r1,j, . . . , rna,j)

∂ri,j

, (82)

p
(2)
i = − 1

nm

na∑
i′=1

n∑
j=1

∂2V (r1,j, . . . , rna,j)

∂ri,j∂ri′,j
· pi′,j. (83)

Substituting Eq. (81) into Eq. (78) with r = s = 0, and evaluating the resulting mo-

mentum integrals as described in Sec. III, it is easy to show that the RPMD approximation

produces the exact expansion coefficient c̃(0)
v·v(0) in Eq. (74), for any number of ring polymer

beads. The analysis of the coefficients c̃(2)
v·v(0) and c̃(4)

v·v(0) proceeds along the same lines, but

it is a bit more complicated, and in this case the result does depend on the number of ring

polymer beads. One finds that setting r = 1 and s = 0 in Eq. (78) ultimately leads to an
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expression for c̃(2)
v·v(0) that can be written in the form of Eq. (75), with the angular bracket

defined as 〈
∂2V (r1, . . . , rna)

∂η2
i

〉
=

1

N

∫ ∫ na∏
k=1

n∏
j=1

dpk,jdrk,j e−βnHn({pk,j},{rk,j})

× 1

n

n∑
j′=1

∂2V (r1,j′ , . . . , rna,j′)

∂η2
i,j′

. (84)

And setting r = 2 and s = 2 in Eq. (78) leads to an expression for c̃(4)
v·v(0) of the form in

Eq. (79), with〈(
∂2V (r1, . . . , rna)

∂ηi∂ηi′

)2〉
=

1

N

∫ ∫ na∏
k=1

n∏
j=1

dpk,jdrk,j e−βnHn({pk,j},{rk,j})

× 1

n

n∑
j′=1

(
∂2V (r1,j′ , . . . , rna,j′)

∂ηi,j′∂ηi′,j′

)2

. (85)

Recognizing the right-hand sides of these equations as n-bead path integral approximations

to the exact thermal expectation values of the local operators ∂2V (r̂1, . . . , r̂na)/∂η̂2
i and

(∂2V (r̂1, . . . , r̂na)/∂η̂i∂η̂i′)
2
, one sees that the expansion coefficients c̃(2)

v·v(0) and c̃(4)
v·v(0) will

be given exactly by Eq. (78) in the limit as n → ∞. As in the simple one-dimensional

case considered above, the RPMD velocity autocorrelation function of a monatomic liquid

therefore has a leading error of O(t6), and one can again show that any other choice of the

Parrinello-Rahman mass matrix will give an error of at least O(t4).

This is just one of several examples that we could have chosen to illustrate how the

results in Secs. II and III extend to multi-dimensional problems, but it is an important

one. Rabani et al. have recently compared a number of different approximate quantum

dynamical simulations of the velocity autocorrelation spectrum of normal liquid helium at

4 K, where identical particle exchange effects can be neglected.64 They found that the NAC

and QMCT methods gave very similar spectra, with a significant tail extending to high

frequencies (ω > 50 cm−1) owing to the rapid initial decay of the corresponding velocity

autocorrelation functions. However, the (adiabatic) CMD method was found to give a

noticeably different spectrum, without any high-frequency tail.64 Since the RPMD velocity

autocorrelation function c̃v·v(t) is more accurate than the CMD autocorrelation function

at short times, one would expect this problem to be fixed in RPMD, and indeed Hone et

al. have recently shown that the RPMD velocity autocorrelation spectrum of normal liquid

helium has the same high-frequency tail as is seen in NAC and QMCT.68 This numerical
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result is consistent with the present analysis, and it provides a clear example of a situation

in which the RPMD choice of Parrinello-Rahman mass matrix is preferable to that used in

adiabatic CMD.

V. CONCLUDING REMARKS

In this paper, we have shown that the RPMD approximation is more accurate at short

times than any other quantum dynamical approximation based on path integral molecular

dynamics, including the adiabatic implementation of CMD. This provides some theoretical

justification for using RPMD in preference to CMD, and it also goes some way towards

explaining the success of several earlier RPMD calculations.46−50 However, it does not con-

stitute a derivation of the RPMD method, because it is hard to see how to obtain the ansatz

in Eq. (31) from first principles. As we have stressed from the outset,45 the RPMD approx-

imation simply provides a convenient model for the effect of quantum fluctuations on the

dynamics of complex (dissipative) chemical systems, and we would not want to claim any

more of it than this. The model is consistent with the exact quantum mechanical detailed

balance condition, it gives the exact result in the classical (high temperature) limit and in

the harmonic limit, and it becomes exact at all temperatures in the limit as t → 0.45 All we

have done here is to explore how accurately this short-time limit is approached.

Another important thing to bear in mind is that high accuracy in the short-time limit

will not always be the main concern. We have argued above that this limit is important

for normal liquid helium at 4 K, where the rapid initial decay of the velocity autocorrela-

tion function leads to a pronounced high-frequency tail in the corresponding spectrum.64,68

However, there are other problems for which the short-time limit is less important, such as

the position autocorrelation function of the one-dimensional quartic oscillator considered in

Ref. 61. Here the exact quantum mechanical Kubo-transformed autocorrelation function

oscillates sinusoidally at low temperatures, and the first few terms in a Taylor series expan-

sion are not enough to influence this sinusoidal behavior. This simple non-dissipative model

system has been studied several times using RPMD and CMD, and the CMD approximation

is found to capture more of the amplitude of the oscillation at longer times.44,45,61 Why this

should be we do not fully understand, and the present short-time analysis sheds no light on

it.
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