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Abstract

We have used the ring polymer molecular dynamics method to calculate approximate Kubo-

transformed velocity autocorrelation functions and self-diffusion coefficients for low-pressure liq-

uid para-hydrogen at temperatures of 25 and 14 K. The resulting diffusion coefficients are

shown to be consistent with experimental shear viscosities and the established finite size relation

D(L) ' D(∞)−2.837kBT/6πηL, where kB is the Boltzmann constant, T the absolute temperature,

η the shear viscosity, and L the length of the (cubic) simulation cell. The diffusion coefficients D(L)

obtained in simulations with finite system sizes are therefore too small. However, the extrapolation

to infinite system size corrects this deficiency and leads to excellent agreement with experimental

results. This both demonstrates the influence of system-size effects on quantum mechanical diffu-

sion coefficients and provides further evidence that ring polymer molecular dynamics is an accurate

as well as practical way of including quantum effects in condensed phase molecular dynamics.
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I. INTRODUCTION

Liquid para-hydrogen provides an ideal testing ground for methods that include quan-

tum mechanical effects in molecular dynamics simulations. While hydrogen is certainly

a quantum liquid, it does not exhibit such pronounced identical particle exchange effects

as liquid helium, and this significantly simplifies the calculations. The triple point tem-

perature of hydrogen is 13.8 K, and even at this temperature the thermal wavelength

λ = h/(2πmkBT )1/2 ' 3.3 Å is only just larger than the hard-sphere diameter for the

interaction between two hydrogen molecules (σ ' 3.0 Å). This implies that the exchange

of identical para-hydrogen molecules will not have an enormous effect on the properties of

the liquid phase, as was demonstrated some time ago for static equilibrium properties by

path integral Monte Carlo calculations.1 Furthermore, since the critical point temperature

Tc ' 33.1 K is substantially lower than the rotational temperature θrot ' 87.6 K, the vast

majority of para-hydrogen molecules will be in their ground rotational state in the liquid

phase. Since J = 0 rotational wave functions are spherically symmetric, this implies that the

interaction between the molecules can be modeled to a good approximation by an isotropic

pair potential,1 which once again simplifies the calculations.

As a result of these simplifications, the self-diffusion coefficient of liquid para-hydrogen

has already been calculated using a wide variety of approximate quantum mechanical

techniques.2−9 These range from more formal approaches such as maximum entropy an-

alytic continuation of the imaginary-time propagator2 and quantum mode-coupling theory3

through to trajectory-based techniques such as centroid molecular dynamics,4−7 forward-

backward semiclassical dynamics,8 and the classical Wigner model.9 However, because of

the difficulty of performing condensed phase quantum dynamical calculations, all of these

previous studies have considered rather small simulation cells (the largest to date consisting

of 256 molecules6), and none of them has investigated how the calculated diffusion coefficient

scales with the system size.

The reason why this might be an important issue is that the self-diffusion coefficient of a

purely classical liquid is known to increase quite significantly as the size of the simulation is

increased. As was first shown by Dünweg and Kremer,10 and has recently been reiterated by

Yeh and Hummer,11 the leading system-size dependence of the calculated diffusion coefficient
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will be given by the hydrodynamic equation

D(L) = D(∞)− ξ
kBT

6πηL
, (1)

where η is the shear viscosity, L the length of the simulation cell, and ξ a numerical coefficient

that depends on the geometry of the simulation12 (with ξ ' 2.837297 for a cubic cell12,13).

As Yeh and Hummer have emphasized,11 the vast majority (> 80%) of the correction for

finite size effects in Eq. (1) comes from the fact that the average momentum of the atoms in

the simulation must be set equal to zero to satisfy Newton’s third law. This clearly restricts

the motion of the atoms in a small simulation cell more so than in a large one, leading to

an increase in the calculated diffusion coefficient with increasing system size. The key point

we would add here is that there is no reason why the same argument, and indeed the entire

hydrodynamic argument that leads to the more precise result in Eq. (1),10,11 should not also

apply to a quantum simulation.

In order to explore this issue, we have performed some new calculations of the self-

diffusion coefficient of liquid para-hydrogen using the approximate quantum mechanical ring-

polymer molecular dynamics (RPMD) method.14 This is the first time that this method,

which generalizes the exact path integral molecular dynamics technique for calculating static

equilibrium properties,15 has been applied to a condensed phase dynamical problem. The

equations that are needed to calculate the self-diffusion coefficient of liquid para-hydrogen

using the method are therefore summarized in Sec. II. The great advantage of the RPMD

approximation in comparison to alternative techniques is that it is simple enough to allow

one to perform calculations on systems with a wide range of different sizes, even on a

personal computer. We have therefore been able to study the system-size scaling of our

computed diffusion coefficients and confirm that this scaling satisfies Eq. (1). The results of

this investigation are discussed in Sec. III and summarized in Sec. IV.

II. THEORY

A. Ring polymer molecular dynamics

The exact quantum mechanical self-diffusion coefficient of liquid para-hydrogen is given

by a Green-Kubo relation in terms of the time-integral of a Kubo-transformed velocity
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autocorrelation function:16

D =
1

3

∫ ∞

0
C̃v·v(t)dt, (2)

where

C̃v·v(t) =
1

ZβNm2

N∑
i=1

∫ β

0
tr

[
e−λĤp̂ie

−(β−λ)Ĥ · e+iĤt/h̄p̂ie
−iĤt/h̄

]
dλ, (3)

with

Z = tr
[
e−βĤ

]
. (4)

Here β = 1/(kBT ) is the reciprocal temperature, N the number of molecules in the system,

m their molecular mass, Ĥ the Hamiltonian operator for the entire system, and p̂i the

center-of-mass momentum operator for molecule i.

Strictly speaking, since hydrogen molecules are composite bosons, the traces in Eqs. (3)

and (4) should be evaluated in a basis of symmetrized coordinate eigenstates.17 However,

as we have discussed in the introduction, boson exchange effects are unlikely to have a

significant impact on the properties of liquid para-hydrogen. We shall therefore follow ear-

lier treatments1−9 in ignoring these effects and regarding the para-hydrogen molecules as

distinguishable particles.

Now the RPMD method provides an approximation to correlation functions involving

configurational (position-dependent) operators,14 rather than those involving momentum

operators such as C̃v·v(t). However, since the momentum operators p̂i in Eq. (3) are pro-

portional to the Heisenberg time-derivatives of position operators,

p̂i = m
i

h̄

[
Ĥ, r̂i

]
, (5)

where r̂i is the center-of-mass position operator of molecule i, the exact velocity autocorre-

lation function C̃v·v(t) can be calculated equivalently as

C̃v·v(t) = − d2

dt2
C̃r·r(t), (6)

where

C̃r·r(t) =
1

ZβN

N∑
i=1

∫ β

0
tr

[
e−λĤ r̂ie

−(β−λ)Ĥ · e+iĤt/h̄r̂ie
−iĤt/h̄

]
dλ (7)

is a Kubo-transformed position autocorrelation function. Since the correlated operators in

this last equation are configurational, the RPMD method can be applied to C̃r·r(t), and the

corresponding approximation to C̃v·v(t) then obtained from Eq. (6). (The same argument

can also be used to apply the method to the wide variety of other correlation functions
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that involve Heisenberg time derivatives. It has recently been used, for example, in an

application to the flux-side correlation functions that arise in the calculation of chemical

reaction rates.18)

In the absence of identical particle exchange effects, the RPMD approximation to C̃r·r(t)

is simply14

C̃r·r(t) '
1

(2πh̄)3NnZn

∫ ∫ N∏
j=1

n∏
k=1

dp
(k)
j dr

(k)
j e−βnHn({p(k)

j },{r(k)
j }) 1

N

N∑
i=1

ri(0) · ri(t), (8)

where

Zn =
1

(2πh̄)3Nn

∫ ∫ N∏
j=1

n∏
k=1

dp
(k)
j dr

(k)
j e−βnHn({p(k)

j },{r(k)
j }). (9)

In these equations, βn = β/n, and Hn({p(k)
j }, {r(k)

j }) is the classical Hamiltonian of a system

of N harmonic ring n-polymers that interact through the physical interaction potential

V (r1, . . . , rN),

Hn({p(k)
j }, {r(k)

j }) =
N∑

j=1

n∑
k=1

(p
(k)
j )2

2m
+

1

2
mω2

n(r
(k)
j − r

(k−1)
j )2

 +
n∑

k=1

V (r
(k)
1 , . . . , r

(k)
N ), (10)

where ωn = 1/(βnh̄) and r
(0)
j ≡ r

(n)
j . The classical equations of motion generated by this

ring-polymer Hamiltonian are used to evolve the integration variables in Eq. (8) forwards in

time,

ṗ
(k)
j = −mω2

n(2r
(k)
j − r

(k−1)
j − r

(k+1)
j )− ∂V (r

(k)
1 , . . . , r

(k)
N )

∂r
(k)
j

, (11)

ṙ
(k)
j =

p
(k)
j

m
, (12)

and the position centroid ri(t) in Eq. (8) is obtained from an average over the beads of the

i-th ring-polymer necklace at time t:

ri(t) =
1

n

n∑
k=1

r
(k)
i (t). (13)

The corresponding approximation to the Kubo-transformed velocity autocorrelation func-

tion Cv·v(t) in Eq. (3) can now be obtained by differentiating Eq. (8) twice with respect to

time [see Eq. (6)]. Exploiting the symmetries of the classical ring-polymer dynamics,14 we

find that the result of these two differentiations can be rearranged to the form

C̃v·v(t) ' 1

(2πh̄)3NnZn

∫ ∫ N∏
j=1

n∏
k=1

dp
(k)
j dr

(k)
j e−βnHn({p(k)

j },{r(k)
j }) 1

Nm2

N∑
i=1

pi(0) · pi(t), (14)
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where pi(t) is momentum centroid of the i-th ring-polymer at time t:

pi(t) =
1

n

n∑
k=1

p
(k)
i (t). (15)

Notice in passing that Eq. (14) reduces correctly to a purely classical velocity autocorrelation

function,

Ccl
v·v(t) ' 1

(2πh̄)3NZcl

∫ ∫ N∏
j=1

dpjdrje
−βH({pj},{rj}) 1

Nm2

N∑
i=1

pi(0) · pi(t), (16)

in the case of n = 1 ring polymer bead.

A general feature of the RPMD method is that the above equations will give the correct

quantum mechanical correlation functions (for distinguishable particles) in the limit as t →

0.14 Indeed one can show in the present case that the first three time derivatives of the

position autocorrelation function C̃r·r(t) in Eq. (8) will also be exact in this short-time limit.

Since C̃r·r(t) is a real and even function of t, its first and third derivatives vanish as t → 0,

and it is easy to show from Eq. (14) that for any n

lim
t→0

C̃v·v(t) =
3

βm
, (17)

which coincides with the exact quantum mechanical result obtained from Eq. (3). Even the

purely classical (n = 1) formula for the velocity autocorrelation function in Eq. (16) will

therefore give the correct Kubo-transformed quantum result in the limit as t → 0.

The theoretical situation for longer times (t � 0) is of course less satisfactory, as it

is for all other approximate quantum dynamical techniques.2−9 As we have stressed from

the outset,14 the RPMD method simply provides a convenient model for the effect of an

initial quantum Boltzmann distribution on the subsequent real-time dynamics. This model

is consistent with the quantum mechanical equilibrium distribution, it respects all of the

symmetry properties of the exact Kubo-transformed correlation function, and it can be

shown to give the exact result in certain limiting cases (such as the classical limit, the limit

of a harmonic potential, and in the limit as t → 0).14 However, it is still no more than a

model, and one can only be confident that it will give a good approximation to the correct

result for problems in which real-time quantum interference effects are rapidly quenched.14

Fortunately, this is likely to be the case for a wide variety of condensed phase problems,

including the liquid para-hydrogen problem under investigation here.
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B. Computational details

In order to describe the interaction between J = 0 para-hydrogen molecules, we have

followed earlier work1−9 in using the isotropic part of the Silvera-Goldman pair potential19

V (r) = eα−βr−γr2 −
(

C6

r6
+

C8

r8
− C9

r9
+

C10

r10

)
fc(r), (18)

where

fc(r) =

 e−(rc/r−1)2 if r ≤ rc

1 otherwise,
(19)

with the parameters listed in Table I. The only component of Eq. (18) that does not have

an obvious physical interpretation is the C9/r
9 term, which is an effective two-body approx-

imation to the three-body tripole-dipole dispersion interaction.19 Isothermal-isobaric path

integral Monte Carlo (PIMC) calculations using this pair potential have been shown to give

good agreement with experimental results for a variety of the static equilibrium properties

of liquid para-hydrogen.1

In our RPMD simulations, we used the theoretical molar volumes obtained in this earlier

PIMC study (25.6 cm3 mol−1 at 14 K and 31.7 cm3 mol−1 at 25 K), which were calculated

under conditions of approximately zero external pressure.1 For each of these two thermody-

namic state points, we performed simulations with four different system sizes, containing 108,

256, 500 and 864 para-hydrogen molecules. Periodic boundary conditions were applied us-

ing the minimum image convention with the interaction between neighboring ring-polymers

truncated at a centroid-to-centroid distance of 15 bohr. Tests with larger cutoff distances

were found to give identical results to within the statistical error of the calculations.

In each individual simulation, we equilibrated the system for 100 ps, and then calculated

the velocity autocorrelation function in Eq. (14) for 2 ps by averaging over 100 consecutive 4

ps ring-polymer trajectories with a time step of 0.5 fs. The equations of motion in Eqs. (11)

and (12) were integrated using a symplectic integrator based on alternating free harmonic

ring-polymer and external force steps. The temperature was controlled by re-sampling the

ring-polymer momenta from the Maxwell distribution at inverse temperature βn between

each trajectory. This procedure was repeated five times to obtain an average value for (and

a standard error in) the diffusion coefficient of each simulation.

As expected from the earlier PIMC calculations of static equilibrium properties,1 we found

that n = 24 ring-polymer beads sufficed to give converged results at 25 K, and n = 48 beads
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at 14 K. For comparison with the classical limit, we also repeated each of our calculations

using just n = 1 ring-polymer bead. This led to an interesting insight concerning the

difference between quantum and classical simulations at the same thermodynamic state

point which we have already reported in a preliminary communication.20 We shall return to

comment further on this matter in Sec. IIIC.

III. RESULTS AND DISCUSSION

A. Velocity autocorrelation functions

Our calculated Kubo-transformed velocity autocorrelation functions at the T = 25 K,

V = 31.7 cm3 mol−1 and T = 14 K, V = 25.6 cm3 mol−1 thermodynamic state points

are presented in Fig. 1. The results shown in this figure were obtained from simulations

of a periodically replicated system of 864 molecules (63 face-centered cubic unit cells), and

represent an average over 500 separate ring-polymer trajectories. The estimated statistical

errors in the results are smaller than the widths of the plotted curves.

One sees from the figure that the calculated velocity autocorrelation functions behave

much as one would expect for a sub-critical fluid (25 K; upper panel) and a low-temperature

liquid (14 K; lower panel). In particular, there is a significant negative contribution to the

autocorrelation function in the lower temperature (and higher density) simulation, which

arises from the impulsive, velocity-reversing collisions that occur in this regime. A similar

effect has been seen in earlier quantum mechanical simulations using a variety of differ-

ent methods,2−9 and the RPMD Kubo-transformed correlation functions in Fig. 1 can be

compared directly with those reported (for example) in Refs. 4 and 9.

The upshot of this comparison is that our Kubo-transformed correlation functions agree

somewhat better with those of the centroid molecular dynamics method4 than they do

with those of the classical Wigner model.9 In particular, the small maximum in the velocity

autocorrelation function at around 0.4 ps in the upper panel of Fig. 1 is also present in Fig. 2

of Pavese and Voth,4 but it is absent from Fig. 5 of Poulsen et al.9 The RPMD and classical

Wigner methods are therefore seen to give qualitatively different velocity autocorrelation

functions at longer times. This simply highlights the fact that neither method (nor indeed

any other method that neglects quantum mechanical interference effects in the real-time
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dynamics) is guaranteed to give an accurate result for t > βh̄ (' 0.3 ps at 25 K).21

The better agreement we obtain with the results of Pavese and Voth4 can be attributed

to the fact that RPMD has more in common with centroid molecular dynamics than it

does with the classical Wigner model. The ring-polymer and centroid molecular dynam-

ics approximations both conserve the exact quantum mechanical equilibrium distribution,

whereas the classical Wigner model involves purely classical trajectories that conserve the

classical Boltzmann density e−βH({pj},{qj}). As Voth and Hone have recently emphasized,22

this difference can be quite significant when the quantum and classical equilibrium distribu-

tions differ in a fundamental way, as is now known to be the case for liquid para-hydrogen

at both of the present thermodynamic state points.20 It is therefore not surprising that our

Kubo-transformed velocity autocorrelation functions disagree at long times with those of

the classical Wigner model.

B. The average kinetic energy

Since different approximations give different results, and an exact quantum dynamical

treatment is currently not possible, we clearly need some sort of theoretical measure of the

quality of the computed Kubo-transformed velocity autocorrelation functions in Fig. 1.

Such a measure has recently been devised by Poulsen et al.,9 based on the observation

that the standard velocity autocorrelation function

Cv·v(t) =
1

ZNm2

N∑
i=1

tr
[
e−βĤp̂i · e+iĤt/h̄p̂ie

−iĤt/h̄
]
, (20)

becomes proportional to the average value of the kinetic energy per molecule in the short-

time limit:

Cv·v(0) =
1

ZNm2

N∑
i=1

tr
[
e−βĤp̂i · p̂i

]
≡ 2

m
〈KE〉 . (21)

This implies a constraint on the Kubo-transformed velocity autocorrelation function by

virtue of the relationship between the Fourier transforms of Cv·v(t) and C̃v·v(t). If G̃v·v(ω)

is the Fourier transform of C̃v·v(t),

G̃v·v(ω) =
∫ ∞

−∞
e−iωtC̃v·v(t)dt, (22)

and Gv·v(ω) is that of Cv·v(t), then it is straightforward to show that

Gv·v(ω) =
βh̄ω

(1− e−βh̄ω)
G̃v·v(ω), (23)
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and combining this with Eq. (21) gives

〈KE〉K =
m

4π

∫ ∞

−∞
dω

∫ ∞

−∞
dt

βh̄ω

(1− e−βh̄ω)
e−iωtC̃v·v(t). (24)

Hence the average kinetic energy per molecule depends on the behavior of the Kubo-

transformed velocity autocorrelation function C̃v·v(t) at all times, and not just at t = 0

where RPMD is already known to give the exact result in Eq. (17).

The utility of this constraint is that 〈KE〉 is a static equilibrium property that can

be computed exactly by path integral molecular dynamics (PIMD).15 Furthermore, since

RPMD reduces to PIMD for static properties,14 we can calculate 〈KE〉 exactly using our

method at the same time as we calculate our approximation to C̃v·v(t). The most efficient

statistical estimator for this purpose is the virial estimator23

KEV =
3

2β
+

1

2Nn

N∑
j=1

n∑
k=1

(r
(k)
j − rj) ·

∂V (r
(k)
1 , . . . , r

(k)
N )

∂r
(k)
j

, (25)

which one simply time-averages over each ring-polymer trajectory to obtain the average

value 〈KE〉V; a comparison of this with 〈KE〉K then provides a check on the accuracy of

the approximate real-time RPMD dynamics. (The first term in Eq. (25) is the classical

kinetic energy associated with the motion of the ring-polymer centroids {rj} and the second

is the kinetic energy associated with quantum fluctuations; this second term vanishes in

the free-particle limit but it can be quite substantial in a confined quantum liquid like

para-hydrogen.)

The results of this consistency check are shown in Table II, which compares the exact

quantum mechanical kinetic energy 〈KE〉V with the approximate RPMD kinetic energy

〈KE〉K and the purely classical result 3kBT/2 at both of the thermodynamic state points

considered in Fig. 1. One sees from this table that the real-time ring polymer dynamics does a

remarkably good job of capturing the quantum mechanical contribution to the kinetic energy

of liquid para-hydrogen. In fact, it predicts a quantum contribution to the kinetic energy

that only exceeds that of the virial estimator by about 10% (at both temperatures). Since

both estimates were obtained from the same calculation, we believe that this 10% deviation

from the exact result provides a reliable indication of the accuracy of the Kubo-transformed

correlation functions in Fig. 1.

10



C. Diffusion coefficients

The average kinetic energy 〈KE〉K in Eq. (24) is just one of many possible integral

averages of a Kubo-transformed velocity autocorrelation function C̃v·v(t). The diffusion

coefficient D in Eq. (2) is another. Our calculated RPMD self-diffusion coefficients at the 25

and 14 K thermodynamic state points are tabulated as a function of the number of molecules

in the simulation in Table III.

It is clear from this table that, while the average kinetic energy is already well converged

with a system size of 108 molecules (see Table II), the RPMD self-diffusion coefficients for

liquid para-hydrogen increase quite significantly as the size of the simulation is increased.

This behavior was anticipated in the introduction on the basis of the hydrodynamic formula

in Eq. (1), which predicts that D(N) will scale with the number of molecules N in the

simulation according to

D(N) = D(∞)− aN−1/3, (26)

where

a =
2.837kBT

6πηl
, (27)

with l = 3.748 Å (3.515 Å) for a molar volume of 31.7 cm3 (25.6 cm3).

This prediction is confirmed in Figs. 2 and 3, which plot the calculated diffusion coef-

ficients in Table III as a function of N−1/3. Also included in these figures are the purely

classical (n = 1 bead) results that we reported in our earlier communication.20 The illustra-

tions in the two figures show typical configurations from the RPMD and classical simulations

of a system containing 500 molecules. In these illustrations, the radii of the classical particles

have been set equal to the hard sphere radius for the interaction between two para-hydrogen

molecules (σ/2 ' 1.5 Å). The radii of the quantum particles have been “swollen” from

this by an amount equal to the average radius of gyration of the ring polymers, which was

calculated from the statistical estimator

r2
G =

1

Nn

N∑
j=1

n∑
k=1

|r(k)
j − rj|2, (28)

and found be rG ' 0.47 Å at 25 K and 0.56 Å at 14 K. For comparison with these values,

the free harmonic ring n-polymer result

r2
G(free) =

βh̄2

4m

(
1− 1

n2

)
, (29)
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gives rG ' 0.49 Å at 25 K and 0.66 Å at 14 K. The compression of the radius of gyration due

to intermolecular interactions was therefore found (as expected) to be larger in the dense

quantum liquid than in the sub-critical fluid.

Although both the classical and RPMD diffusion coefficients in Figs. 2 and 3 vary linearly

with N−1/3, they do so for entirely different reasons. The primary reason for the N−1/3

scaling of the classical diffusion coefficients is that the present thermodynamic state points

lie in the liquid-vapor coexistence region of the classical phase diagram.20 This leads to

the spontaneous formation of bubbles in the classical simulations, such as those we have

illustrated in Figs. 2 and 3. The observed scaling arises because the fraction of molecules at

the surface of a bubble is proportional to N−1/3, where N is the total number of molecules

in the simulation. Since the surface of the bubble has a lower density than the bulk liquid,

the molecules at the surface diffuse more rapidly, which explains why the classical diffusion

coefficient decreases with an increase in the system size.20

By contrast, we believe that the origin of the N−1/3 scaling of the RPMD results is the

restricted reciprocal space of a finite-sized simulation, which leads to the formula for the

diffusion coefficient in Eq. (1).10,11 In order to confirm this interpretation, we have used

Eq. (27) to calculate shear viscosities from the linear fits to the RPMD data in Figs. 2

and 3. The resulting viscosities are η = 1.39 × 10−5 Nsm−2 at the 25 K state point and

η = 2.38× 10−5 Nsm−2 at 14 K. These results agree sufficiently well with the experimental

shear viscosities of liquid para-hydrogen at saturated vapor pressure24 (0.94×10−5 Nsm−2 at

25 K and 2.51×10−5 Nsm−2 at 14 K) to convince us that Eq. (1) accounts for the majority (if

not all) of the system-size dependence of the RPMD calculations. In this case the calculated

diffusion coefficient increases with an increase in the system size because more reciprocal

space points are available to a larger simulation.

Finally, we note that the RPMD diffusion coefficients extrapolated to infinite system size

in Figs. 2 and 3 agree rather well with experimental data. We obtain D(∞) = 1.59 Å2

ps−1 at the 25 K state point and 0.33 Å2 ps−1 at 14 K. For comparison, the experimental

self-diffusion coefficients of liquid para-hydrogen at saturated vapor pressure are 1.6 Å2 ps−1

at 25 K and 0.4 Å2 ps−1 at 14 K.25 These results are collected together with those from a

number of earlier theoretical studies of liquid para-hydrogen in Table IV.
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IV. SUMMARY

In this paper, we have used the approximate quantum mechanical RPMD method to

calculate Kubo-transformed velocity autocorrelation functions and self-diffusion coefficients

for low-pressure liquid para-hydrogen at temperatures of 25 and 14 K. This is the first

time that this method, which generalizes the exact PIMD technique for calculating static

equilibrium properties, has been applied to a condensed phase dynamical problem.

The accuracy of the resulting velocity autocorrelation functions has been tested by using

them to calculate the average kinetic energy of liquid para-hydrogen, and comparing the

results with those obtained from exact PIMD calculations. The real-time RPMD approxi-

mation was found in this way to overestimate the quantum mechanical contribution to the

kinetic energy at each temperature by about 10%. This is our best estimate of the accuracy

of the RPMD approximation for the present problem.

We have also studied the system-size scaling of our calculated self-diffusion coefficients

and confirmed that this scaling satisfies the hydrodynamic relation in Eq. (1). To the best

of our knowledge, this is the first time that the system-size scaling of quantum diffusion

coefficients has been investigated. It would be interesting to see whether the same scaling is

obtained using the other approximate quantum mechanical techniques that have previously

been applied to liquid para-hydrogen.2−9

The RPMD diffusion coefficients obtained in simulations with finite system sizes are

somewhat smaller than those predicted by these alternative techniques. However, when the

scaling implied by Eq. (1) is used to extrapolate our calculated diffusion coefficients to infinite

system size, we obtain remarkably good agreement with experimental data (see Table IV).

Since this is a problem for which purely classical molecular dynamics fails completely (see

Figs. 2 and 3), we find this result to be rather encouraging.

It will be interesting in future work to see whether the RPMD approximation does equally

well for various other dynamical properties of liquid para-hydrogen, such as more general

transport coefficients6 and van Hove correlation functions.3,7 It will also be interesting to

extend the method to include identical particle (boson) exchange effects, so that it can be

applied to liquid 4He.
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TABLE I: Parameters in the Silvera-Goldman pair potential (in atomic units).

α 1.713 C6 12.14

β 1.5671 C8 215.2

γ 0.00993 C9 143.1

rc 8.32 C10 4813.9
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TABLE II: Estimates of the average kinetic energy per molecule of liquid para-hydrogen at the

T = 25 K, V = 31.7 cm3 mol−1 and T = 14 K, V = 25.6 cm3 mol−1 state points, as a function of

the number of molecules in the simulation. (The statistical errors in the exact and RPMD results

are no larger than 0.1 K.)

T (K) N Kinetic energy (K)

Exact RPMD Classical

[Eq. (25)] [Eq. (24)] [3kBT/2]

25 108 61.8 64.3 37.5

256 61.9 64.2

500 61.9 64.4

864 62.0 64.5

14 108 63.6 67.7 21

256 63.7 67.6

500 63.8 67.6

864 63.8 67.7
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TABLE III: Calculated self-diffusion coefficients of liquid para-hydrogen at the T = 25 K, V = 31.7

cm3 mol−1 and T = 14 K, V = 25.6 cm3 mol−1 state points, as a function of the number of molecules

in the simulation. (The numbers in parentheses are the standard errors in the last digit from the

RPMD calculations.)

N D (Å2ps−1)

25 K 14 K

108 1.380(7) 0.252(3)

256 1.433(7) 0.270(3)

500 1.463(4) 0.282(2)

864 1.483(3) 0.288(2)
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TABLE IV: Calculated and experimental self-diffusion coefficients for low-pressure liquid para-

hydrogen at 25 and 14 K. (The numbers in parentheses are the estimated errors in the last digit

in cases where these are available.)

Method N D (Å2ps−1)

25 K 14 K

MEAC(a) 108 1.47 0.28

QMCT(b) 108 1.69 0.30

FBSD(c) 108 1.68(5) 0.75(7)

CWM(d) 125 1.73 · · ·

CMD(e) 180 1.52(8) 0.35(5)

RPMD(f) ∞ 1.59(1) 0.33(1)

Expt(g) 1.6 0.4

(a) Maximum entropy analytic continuation (Ref. 2).

(b) Quantum mode-coupling theory (Ref. 3).

(c) Forward-backward semiclassical dynamics (Ref. 8).

(d) Classical Wigner model (Ref. 9).

(e) Centroid molecular dynamics (Ref. 7).

(f) Extrapolated values from Figs. 2 and 3 (present work).

(g) Experimental results from Ref. 25.
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FIG. 1: Kubo-transformed velocity autocorrelation functions C̃v·v(t) for liquid para-hydrogen at

the T = 25 K, V = 31.7 cm3 mol−1 and T = 14 K, V = 25.6 cm3 mol−1 state points, as obtained

from the present RPMD calculations with a system size of 864 molecules.
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FIG. 2: System-size scaling of RPMD (n = 24) and classical (n = 1) self-diffusion coefficients for

liquid para-hydrogen at the T = 25 K, V = 31.7 cm3 mol−1 state point. The illustrations show

typical configurations from the simulations of a system containing N = 500 molecules.
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FIG. 3: System-size scaling of RPMD (n = 48) and classical (n = 1) self-diffusion coefficients for

liquid para-hydrogen at the T = 14 K, V = 25.6 cm3 mol−1 state point. The illustrations show

typical configurations from the simulations of a system containing N = 500 molecules.
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